Skip to main content

Advertisement

Log in

Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Geothermal energy plays an increasingly important role as a renewable energy source. However, it induces temperature changes in natural thermally static groundwater ecosystems. Temperature impacts can considerably alter the groundwater chemical composition and quality, the metabolism of organisms, and, consequently, biogeochemical processes and ecosystem functions. Combining original data from current studies with a compact review of recent findings, we show that a moderate increase in groundwater/aquifer temperature [+5 to 10 Kelvin (K)] generally causes only minor changes in water chemistry, microbial biodiversity, and ecosystem function in non-contaminated and energy-poor (oligotrophic) groundwater systems. In aquifers that are contaminated with organics, nutrients, and heavy metals—typical in urban areas and at sites with intensive land use (e.g., agriculture)—and particularly at temperatures ≥30 °C as regularly reached when heat is actively stored in aquifers, significant changes in water quality and ecological patterns can result. Here most critical are the heat-related mobilization of organic matter and contaminants (e.g., arsenic), the reduction and depletion of dissolved oxygen, and consequently the consecutive shift to anaerobic redox processes that may produce toxic and corrosive products (e.g., hydrogen sulfide) and greenhouse gases (e.g., methane and carbon dioxide). Severe temperature alterations lead to a reduced biodiversity of the aquifer’s microbial community with the establishment of atypical thermophilic assemblages. Groundwater fauna, which is specifically adapted to the cold groundwater habitat, may be sensitive to thermal changes at temperature increases of only 5 K with long-term emigration or direct lethal effects. From an ecological point of view, long-lasting or reoccurring temperature alterations need to be carefully evaluated and regulated in the future. We suggest developing local and regional vulnerability concepts for the sustainable and ecologically sound use of subterranean heat and cold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adinolfi M, Koch M, Ruck W (1994) Ökologische und mikrobielle Folgen der Wärmespeicherung im Aquifer. Stuttgarter Berichte zur Siedlungswasserwirtschaft, Oldenbourg Industrieverlag GmbH, München

  • Alfreider A, Krössbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31:832–840

    Article  Google Scholar 

  • Aragno M (1983) Impacts Microbiologiques. Premier cycle d’exploitation de l’installation pilote SPEOS. Annex 10

  • Arning E, Kölling M, Schulz HD, Panteleit B, Reichling J (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 11:27–39

    Article  Google Scholar 

  • Avramov M, Rock TM, Pfister G, Schramm KW, Schmidt SI, Griebler C (2013) Catecholamine levels in groundwater and stream amphipods and their response to temperature stress. Gen Compar Endocrinol 194:110–117

    Article  Google Scholar 

  • Balke KD (1978) Problematik der Kühlwassereinleitung in den Untergrund. S.1978371-1978389

  • Bauer R, Zhang Y, Maloszewski P, Meckenstock RU, Griebler C (2008) Mixing controlled biodegradation in a toluene plume–results from two-dimensional laboratory experiments. J Contam Hydrol 96:150–168

    Article  Google Scholar 

  • Bayer A, Drexel R, Weber N, Griebler C (2016) Quantification of aquatic sediment prokaryotes–a multiple-steps optimization testing sands from pristine and contaminated aquifers. Limnologica 56:6–13

    Article  Google Scholar 

  • Bonte M (2013) Impacts of shallow geothermal energy on groundwater quality–A hydrochemical and geomicrobial study of the effects of ground source heat pumps and aquifer thermal energy storage. Dissertation, Free University of Amsterdam

  • Bonte M, Stuyfzand PJ, van den Berg GA, Hijnen WAM (2011) Effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Sci Technol 63:1922–1931

    Article  Google Scholar 

  • Bonte M, Röling WFM, Zaura E, van der Wielen PWJJ, Stuyfzand PJ, van Breukelen BM (2013a) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484

    Article  Google Scholar 

  • Bonte M, van Breukelen BM, Stuyfzand PJ (2013b) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Wat Res 47:5088–5100

    Article  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  Google Scholar 

  • Brielmann H, Griebler C, Schmidt SI, Michel R, Lueders T (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol Ecol 68:273–286

    Article  Google Scholar 

  • Brielmann H, Lueders T, Schregelmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihre potentiellen Auswirkungen auf Grundwasserökologie. Grundwasser 16:77–91

    Article  Google Scholar 

  • Brons HE, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25:729–736

    Article  Google Scholar 

  • Buesing N, Gessner MO (2003) Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples. Microb Ecol 45:291–301

    Article  Google Scholar 

  • Carroll SA, Walther JV (1990) Kaolinite dissolution at 25°, 60° and 80 °C. Am J Sci 290:797–810

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  Google Scholar 

  • Christ MJ, David MB (1996) Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biol Biochem 28:1191–1199

    Article  Google Scholar 

  • Colson-Proch C, Morales A, Hervant F, Konecny L, Moulin C, Douady CJ (2010) First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression. Cell Stress Chaperones 15:259–270

    Article  Google Scholar 

  • Daveler SA, Wolery TJ (1992) EQPT, A data file preprocessor for the EQ3/6 software package–User’s guide and related documentation (Version 7.0): Lawrence Livermore National Laboratory, UCRL-MA-110662 PT II. http://www.wipp.energy.gov/library/CRA/2009_CRA/

  • DVGW (2013) Erdwärmenutzung in Einzugsgebieten von Trinkwassergewinnungsanlagen. DVGW-Inf 23(07):2013

    Google Scholar 

  • Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, Van Riemsdijk WH (2000) Adsorption of fulvic acid on goethite. Geochim Cosmochim Acta 64:51–60

    Article  Google Scholar 

  • Foulquier A, Malard F, Barraud S, Gibert J (2009) Thermal influence of urban groundwater recharge from stormwater infiltration basins. Hydrol Process 23:1701–1713

    Article  Google Scholar 

  • Foulquier A, Malard F, Mermillod-Blondin F, Montuelle B, Doledec S, Volat B, Gibert J (2011) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353

    Article  Google Scholar 

  • Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907

    Article  Google Scholar 

  • Friis AK, Heimann AC, Jakobsen R, Albrechtsen H-J, Cox E, Bjerg PL (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res 41:355–364

    Article  Google Scholar 

  • Glatzel T (1990) On the biology of Parastenocaris phyllura Kiefer (Copepoda, Harpacticoida). Stygologia 5:131–136

    Google Scholar 

  • Griebler C, Avramov M (2015) Groundwater ecosystem services–a review. Freshw Sci 34:355–367

    Article  Google Scholar 

  • Griebler C, Mindl B, Slezak D, Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28:117–129

    Article  Google Scholar 

  • Griebler C, Malard F, Lefébure T (2014) Current developments in groundwater ecology—from biodiversity to ecosystem function and services. Curr Opin Biotech 27:159–167

    Article  Google Scholar 

  • Griebler C, Kellermann C, Kuntz D, Walker-Hertkorn S, Stumpp C, Hegler F (2015) Auswirkungen thermischer Veränderungen infolge der Nutzung oberflächennaher Geothermie auf die Beschaffenheit des Grundwassers und seiner Lebensgemeinschaften–Empfehlungen für eine umweltverträgliche Nutzung. UFOPLAN, FKZ 3710 23 204, 154 pp

  • Griffioen J, Appelo CAJ (1993) Nature and extent of carbonate precipitation during aquifer thermal energy storage. Appl Geochem 8:161–176

    Article  Google Scholar 

  • GtV Bundesverband Geothermie (2014) http://www.geothermie.de/

  • Hähnlein S, Molina-Giraldo N, Blum P, Bayer P, Grathwohl P (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. Grundwasser 15(2):123–133

    Article  Google Scholar 

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925

    Article  Google Scholar 

  • Hammes FH, Egli T (2005) New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environ Sci Technol 39:3289–3294

    Article  Google Scholar 

  • Hecht-Méndez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for Heat Transport Simulation of Closed Geothermal Systems. Ground Water 48(5):741–756

    Article  Google Scholar 

  • Hofmann R, Größbacher M, Griebler C (2016) Mini sediment columns and two-dimensional sediment flow-through microcosms–versatile model systems for studying biodegradation of organic contaminants in groundwater ecosystems. In: McGenity TJ, Timmis KN, Nogales B (eds) Protocols for Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin-Heidelberg. doi:10.1007/8623_2016_210

  • Issartel J, Hervant F, Voituron Y, Renault D, Vernon P (2005) Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp Biochem Physiol Part A 141:1411–1417

    Article  Google Scholar 

  • Jang Y-C, Townsend TG (2001) Sulfate leaching from recovered construction and demolition debris fines. Adv Environ Res 5:203–217

    Article  Google Scholar 

  • Jesußek A, Grandel S, Dahmke A (2013a) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012

    Article  Google Scholar 

  • Jesußek A, Koeber R, Grandel S, Dahmke A (2013b) Aquifer heat storage: sulfate reduction with acetate at increased temperatures. Environ Earth Sci 69:1763–1771

    Article  Google Scholar 

  • Kaiser K, Kaupenjohann M, Zech W (2001) Sorption of dissolved organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and temperature. Geoderma 99:317–328

    Article  Google Scholar 

  • Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM et al (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-Proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945

    Article  Google Scholar 

  • Karwautz C, Lueders T (2014) Impact of hydraulic well restoration on native bacterial communities in drinking water wells. Microb Environ 29:363–369

    Article  Google Scholar 

  • Kirchman DL (1993) Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Kemp PF, Sherr BF, Sher EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 359–367

    Google Scholar 

  • Köber R, Dörr C, Lüders K, Koprach N, Schäfer D, Dahmke A (2015) Geochemische Beeinflussungen des Grundwassers durch Wärmespeicherung. Geothermische Energie, Heft 82:20–21

    Google Scholar 

  • Köhler SJ, Dufaud F, Oelkers EH (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochim Cosmochim Acta 67:3583–3594

    Article  Google Scholar 

  • Kunkel R, Wendland F, Voigt H-J, Hannappel S (2004) Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Schriften des Forschungszentrums Jülich Reihe Umwelt/Environment Band/Volume 47

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotech 31:814–821

    Article  Google Scholar 

  • Lengeler JW, Drews G, Schlegel HG (1999) Biology of Prokaryotes. Thieme Verlag, Stuttgart-New York

    Google Scholar 

  • Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Würdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17:311–327

    Article  Google Scholar 

  • Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93

    Article  Google Scholar 

  • Malin N, Wilson A (2000) Ground-source heat pumps: are they green? Environ Build News 9:1–22

    Google Scholar 

  • Molina-Giraldo N, Bayer P, Blum P (2011) Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int J Therm Sci 50(7):1223–1231

    Article  Google Scholar 

  • Pannike S, Kölling M, Panteleit B, Reichling J, Scheps V, Schulz HD (2006) Auswirkung hydrogeologischer Kenngrößen auf die Kältefahnen von Erdwärmesondenanlagen in Lockersedimenten. Grundwasser 11(1):6–18

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99–4259. U.S. Department of the Interior, U.S. Geological Survey, Denver, Colarado, p 312

  • Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7:e40467

    Article  Google Scholar 

  • Possemiers M, Huysmans M, Batelaan O (2014) Influence of aquifer thermal energy storage on groundwater quality: a review illustrated by seven case studies from Belgium. J Hydrol Reg Stud 2:20–34

    Article  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101:4631–4636

    Article  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Google Scholar 

  • Schippers A, Reichling J (2006) Laboruntersuchungen zum Einfluss von Temperaturveränderungen auf die Mikrobiologie des Untergrundes. Grundwasser 11:40–45

    Article  Google Scholar 

  • Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N, Shapiro N, Woyke T, Kalyuzhnaya MG (2015) Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Int J Syst Evol Microbiol 65:2227–2233

    Article  Google Scholar 

  • Tiehm A, Schmidt K, Augenstein T, Betting D (2012) Wärmeträgerfluide in der Geothermie: Exemplarische Gefährdungsabschätzung anhand von Strukturaufklärung, Abbaubarkeit und Toxizität. DVGW-Forschungsvorhaben W 1/01/09/Badenova Innovationsfonds-Vorhaben 2010-3

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  Google Scholar 

  • Warkentin M, Freese HM, Karsten U, Schumann R (2007) New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. Appl Environ Microbiol 73:6722–6729

    Article  Google Scholar 

  • Weisse T, Stadler P, Lindstrom ES, Kimmance SA, Montagnes DJS (2002) Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol Oceanogr 47:1447–1455

    Article  Google Scholar 

  • Westphal A, Lerm S, Miethling-Graff R, Seibt A, Wolfgramm M, Würdemann H (2015) Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-7181-1

    Google Scholar 

  • Würdemann H, Westphal A, Lerm S, Kleyböcker A, Teitz S, Kasina M, Miethling-Graff R, Seibt A, Wolfgramm M (2014) Influence of microbial processes on the operational reliability in a geothermal heat store—results of long-term monitoring at a full scale plant and first studies in a bypass system. Energy Proc 59:412–417

    Article  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J 6:692–702

    Article  Google Scholar 

  • Zeman NR, Renno MI, Olson MR, Wilson LP, Sale TC, De Long SK (2014) Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure. Biodegradation 25:569–585

    Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  Google Scholar 

  • Zuurbier KG, Hartog N, Valstar J, Post VEA, van Breukelen BM (2013) The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. J Contam Hydrol 147:1–13

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the German Environment Agency (UFO-PLAN; Forschungskennzahl 3710 23 204) and the Life Science Foundation (http://www.life-science-stiftung.org/). We are grateful to B. Kirschbaum (UBA, Dessau-Berlin), W. Adam (Wasserwirtschaftsamt Freising), H. König and F. Meyfarth (Texas Instruments Germany, Freising), E. Schrade, V. Hammerl, R. Schaupp, K. Groißmeier and A. Balmert (all TUM) as well as G. Hinreiner, G. Teichmann, S. Schaefer, and M. Stoeckl (Helmholtz Zentrum München, IGÖ) for project assistance, support, and valuable discussion. We further thank the members of the scientific board of the UBA project for critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Griebler.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Water in Germany’, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser, and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griebler, C., Brielmann, H., Haberer, C.M. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ Earth Sci 75, 1391 (2016). https://doi.org/10.1007/s12665-016-6207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6207-z

Keywords

Navigation