Skip to main content
Log in

Retrieval of land surface temperature from Landsat 8 TIRS for the command area of Mula irrigation project

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Application of satellite remote sensing in generating various geophysical parameters of land surface has gained tremendous importance in many branches of science and applied research. Out of all geophysical parameters of land surface derived from satellite remote sensing, the land surface temperature (LST) is of prime importance. LST acts as a governing parameter in water and energy exchange between land and atmosphere. It is an essential input to all the numerical weather prediction models, most of the process-based hydrological models and even in irrigation water management activities. Many algorithms for space-based LST retrieval and operational products of LST are available nowadays. However, these products are generally coarser in spatial and/or temporal resolutions. In the sector of irrigation water management, higher spatial resolution of all the geophysical products is prerequisites. Hence, in the present study, LST has been retrieved using two popular algorithms viz. radiative transfer theory (RTT) equation-based method and split-window (SW) algorithm. LST of Mula irrigation project command area has been retrieved using twenty images of Landsat 8 Thermal Infrared Sensor (TIRS) and Operation Land Imager (OLI) for entire Rabi/Winter season. Atmospheric parameters needed for the LST retrieval have been derived using online atmospheric correction tool. The land surface emissivity has been estimated using NDVI threshold technique. The standard daily LST product of MODIS has been used to cross-validate the LST retrieved from both the algorithms. LST retrieved using SW algorithm shows higher correlation coefficient with MODIS LST in entire command area and in agricultural land as well (0.938 and 0.925, respectively) compared to that of LST output of RTT method (0.902 and 0.894, respectively). The relative comparison of the LST products derived from RTT and SW algorithms showed that there is an average difference of ±3 °K between these two products. However, the difference is very small (−0.8 to 0.5°K) in case of agricultural area in the command. The higher correlation coefficient values between retrieved LST using both the algorithms and MODIS LST products hints toward the higher accuracy of derived LST at higher spatial resolution. These high spatial resolution LST products can further be used for irrigation water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agam N, Kustas WP, Anderson MC, Li F, Colaizzi PD (2008) Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions. Geophys Res Lett, 35(2), L02402: 1–7

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration METRIC—applications. J Irrig Drain Eng 133(4):395–406

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133(4):380–394

    Article  Google Scholar 

  • ArcGIS version 10.0 [Computer software] (2010) Redlands, CA, Arc Map, Environmental Systems Resource Institute

  • Baldridge A, Hook S, Grove C, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715

    Article  Google Scholar 

  • Barsi JA, Schott JR, Palluconi FD, Hook SJ (2005) Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth observing systems X, edited by James J. Butler, Proceedings of SPIE, 5882, (Bellingham, WA)

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) The surface energy balance algorithm for land (SEBAL): Part 2 validation. J Hydrol, 212–213, 213–229

  • BastiaanssenWGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL): Part 1 formulation. J Hydrol, 212–213, 198–212

  • Becker F, Li Z-L (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11(3):369–393

    Article  Google Scholar 

  • Chapin F, Sturm M, Serreze M, McFadden J, Key J, Lloyd A, McGuire A, Rupp T, Lynch A, Schimel J (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660

    Article  Google Scholar 

  • Coll C, Galve JM, Sanchez JM, Caselles V (2010) Validation of Landsat-7/ETM + thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans Geosci Remote Sens 48(1):547–555

    Article  Google Scholar 

  • Coll C, Caselles V, Valor E, Niclòs R (2012a) Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sens Environ 117:199–210

    Article  Google Scholar 

  • Coll C, Valor E, Galve JM, Mira M, Bisquert M, García-Santos V, Caselles E, Caselles V (2012b) Long-term accuracy assessment of land surface temperatures derived from the advanced along-track scanning radiometer. Remote Sens Environ 116:211–225

    Article  Google Scholar 

  • ERDAS IMAGINE 2014 [Computer software], Intergraph Corporation

  • Faysash DA, Smith EA (1999) Simultaneous land surface temperature-emissivity retrieval in the infrared Split Window. J Atmos Ocean Technol 16(11):1673–1689

    Article  Google Scholar 

  • Faysash DA, Smith EA (2000) Simultaneous retrieval of diurnal to seasonal surface temperatures and emissivities over SGP ARM-CART site using GOES Split Window. J Appl Meteorol 39(7):971–982

    Article  Google Scholar 

  • Franc G, Cracknell A (1994) Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in North-Eastern Brazil. Int J Remote Sens 15(8):1695–1712

    Article  Google Scholar 

  • http://earthexplorer.usgs.gov/ Accessed on 10 Jan 2015

  • http://atmcorr.gsfc.nasa.gov/ Accessed on 2 Feb 2015

  • Hale RC, Gallo KP, Tarpley D, Yu Y (2010) Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data. Remote Sens Lett 2(1):41–50

    Article  Google Scholar 

  • Jimenez-Munoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res Atmos 108(D22):1–9

    Article  Google Scholar 

  • Jimenez-Munoz JC, Sobrino JA (2006) Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int J Remote Sens 27(5):999–1014

    Article  Google Scholar 

  • Jimenez-Munoz JC, Sobrino JA (2008) Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci Remote Sens Lett 5(4):806–809

    Article  Google Scholar 

  • Jimenez-Munoz JC, Cristobal J, Sobrino JA, Soria G, Ninyerola M, Pons X (2009) Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans Geosci Remote Sens 47(1):339–349

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(6939):528–531

    Article  Google Scholar 

  • Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Clim 23(3):618–633

    Article  Google Scholar 

  • Kustas W, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149(12):2071–2081

    Article  Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41(4):495–516

    Article  Google Scholar 

  • Li Z-L, Tang B, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013a) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37

    Article  Google Scholar 

  • Li Z-L, Wu H, Wang N, Qiu S, Sobrino JA, Wan Z, Tang B-H, Yan G (2013b) Land surface emissivity retrieval from satellite data. Int J Remote Sens 34(9–10):3084–3127

    Article  Google Scholar 

  • Liang S, Li X, Wang J (2012) Advanced remote sensing: terrestrial information extraction and applications. Elsevier, Amsterdam

    Google Scholar 

  • Mao K, Qin Z, Shi J, Gong P (2005a) The research of split-window algorithm on the MODIS. Geomat Inf Sci Wuhan Univ 30(8):703–707

    Google Scholar 

  • Mao K, Qin Z, Shi J, Gong PA (2005b) Practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int J Remote Sens 26(15):3181–3204

    Article  Google Scholar 

  • Markham BL, Storey JC, Williams DL, Irons JR (2004) Landsat sensor performance: history and current status. IEEE Trans Geosci Remote Sens 42(12):2691–2694

    Article  Google Scholar 

  • Masiello G, Serio C (2013) Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances. Appl Opt 52(11):2428–2446

    Article  Google Scholar 

  • Masiello G, Serio C, de Feis I, Amoroso M, Venafra S, Trigo I, Watts P (2013) Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos Measure Tech 6:3613–3634

    Article  Google Scholar 

  • McMillin LM (1975) Estimation of sea surface temperatures from two infrared window measurements with different absorption. J Geophys Res 80(36):5113–5117

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536

    Article  Google Scholar 

  • Narziev JJ (2013) Infrastructure mapping and performance assessment of irrigation project using RS and GIS techniques. CSSTEAP post gradual diploma dissertation, Indian Institute of Remote Sensing, Dehradun, India

  • Niclòs R, Galve JM, Valiente JA, Estrela MJ, Coll C (2011) Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sens Environ 115(8):2126–2140

    Article  Google Scholar 

  • Patil RK (1988) Experiences of farmer participation in irrigation management: Mula command Maharashtra state, India. Irrig Drain Syst 2(1):21–41

    Article  Google Scholar 

  • Pedelty J, Devadiga S, Masuoka E, Brown M, Pinzon J, Tucker C, Roy D, Ju J, Vermote E, Prince S (2007) Generating a long-term land data record from the AVHRR and MODIS instruments. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2007 (IGARSS 2007), Barcelona, Spain, pp 1021–1025

  • Prabhakara C, Dalu G, Kunde VG (1974) Estimation of sea surface temperature from remote sensing in the 11- to 13-μm window region. J Geophys Res 9(33):5039–5044

    Article  Google Scholar 

  • Prata AJ, Caselles V, Coll C, Sobrino JA, Ottlé C (1995) Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens Rev 12(3–4):175–224

    Article  Google Scholar 

  • Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA 7 Advanced very high resolution radiometer. J Geophys Res Atmos 89(D5):7231–7237

    Article  Google Scholar 

  • Qian YG, Li Z-L, Nerry F (2013) Evaluation of land surface temperature and emissivities retrieved from MSG-SEVIRI data with MODIS land surface temperature and emissivity products. Int J Remote Sens 34(9–10):3140–3152

    Article  Google Scholar 

  • Qin Z, Dall’Olmo G, Karnieli A, Berliner P (2001a) Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. J Geophys Res Atmos 106(D19):22655–22670

    Article  Google Scholar 

  • Qin Z, Karnieli A, Berliner P (2001b) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22(18):3719–3746

    Article  Google Scholar 

  • Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001) Aerosols, Climate, and the Hydrological Cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14(4):5768–5780

    Article  Google Scholar 

  • Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42(2):83–106

    Article  Google Scholar 

  • Sánchez J, Scavone G, Caselles V, Valor E, Copertino V, Telesca V (2008) Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM + data: application to the Basilicata region. J Hydrol 351(1–2):58–70

    Article  Google Scholar 

  • Skokovic D, Sobrino JA, Jimenez-Munoz JC, Soria G, Julien Y, Mattar C, Jordi C (2014) Calibration and validation of land surface temperature for Landsat 8-TIRS sensor, Presentation given in workshop on land product validation and evolution, ESA/ESRIN, January 28–30, 2014, Frascati (Italy), http://calvalportal.ceos.org/documents/10136/373404/ESA_Lpve_Sobrino_2014a.pdf/17996f73-e959-478f-8855-766fe14bce2a Accessed 15 Jan 2015

  • Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. Int J Remote Sens 21(2):353–366

    Article  Google Scholar 

  • Sobrino JA, Romaguera M (2004) Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens Environ 92(2):247–254

    Article  Google Scholar 

  • Sobrino JA, Coll C, Caselles V (1991) Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sens Environ 38(1):19–34

    Article  Google Scholar 

  • Sobrino JA, Caselles V, Coll C (1993) Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 16(3):219–236

    Article  Google Scholar 

  • Sobrino JA, Raissouni N, Li Z-L (2001) A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2):256–266

    Article  Google Scholar 

  • Sobrino JA, Jimenez-Munoz JC, Paolini L (2004) Land surface temperature retrieval from Landsat TM 5. Remote Sens Environ 90(4):434–440

    Article  Google Scholar 

  • Sobrino JA, Jimenez-Muoz JC, Soria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martinez P (2008) Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans Geosci Remote Sens 46(1):316–327

    Article  Google Scholar 

  • Sun D, Pinker RT (2003) Estimation of land surface temperature from a geostationary operational environmental satellite (GOES-8). J Geophys Res 108(D11):1–13

    Article  Google Scholar 

  • Tang B, Bi Y, Li Z, Xia J (2008) Generalized split-window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) data. Sensors 8(2):933–951

    Article  Google Scholar 

  • Trigo IF, Monteiro IT, Olesen F, Kabsch E (2008) An assessment of remotely sensed land surface temperature. J Geophys Res 113(D17108):1–12

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, de la Riva J (2014) Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens 6:4345–4368

    Article  Google Scholar 

  • Wan ZM, Dozier JA (1996) A generalized split-window algorithm for retrieving land- surface temperature from space. IEEE Trans Geosci Remote Sens 34(4):892–905

    Article  Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains, USA. Int. J Remote Sens 25(1):61–72

    Article  Google Scholar 

  • Weng Q, Fu P, Gao F (2014) Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ 145:55–67

    Article  Google Scholar 

  • Yang L, YunGang C, XiaoHua Z, ShengHe Z, GuoJiang Y, JiangYong H, XiuChun Y (2014) Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi, Northwest China. J Arid Land 6(6):704–716

    Article  Google Scholar 

  • Yu Y, Privette JL, Pinheiro AC (2008) Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans Geosci Remote Sens 46(1):179–192

    Article  Google Scholar 

  • Yu X, Guo X, Wu Z (2014) Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens 6(10):9829–9852

    Article  Google Scholar 

  • Zhang Z, He G (2013) Generation of Landsat surface temperature product for China, 2000–2010. Int J Remote Sens 34(20):7369–7375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar R. Nikam.

Appendix

Appendix

See Fig. 13.

Fig. 13
figure 13

Mosaic of LST derived using Landsat 8 TIRS images of Path 146/Row 047 and Path 147/Row 046 of the different dates through RTT (ad, il, q, s) and SW (eh, mp, r, t)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikam, B.R., Ibragimov, F., Chouksey, A. et al. Retrieval of land surface temperature from Landsat 8 TIRS for the command area of Mula irrigation project. Environ Earth Sci 75, 1169 (2016). https://doi.org/10.1007/s12665-016-5952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5952-3

Keywords

Navigation