Skip to main content
Log in

Theoretical split-window algorithms for determining the actual surface temperature

  • Published:
Il Nuovo Cimento C

Summary

Two split-window strategies for obtaining the actual surface temperature (AST) from an infra-red sensor system are investigated by means of simulations of radiometer signals for a wide range of different geophysical situations. The differences between strategies are closely related to the strong or weak presence of atmospheric effects in the split-window coefficient. It has been demonstrated that the strong presence makes it necessary to know the total atmospheric water vapour as well as the effective emissivities in the two thermal channels for applying the strong split-window method, whereas for the weak presence one only needs to know the emissivities. Simplified algorithms have been obtained from these methods when some of the input data are unknown. Likewise, included for all these algorithms is a rigorous evaluation of their accuracies that takes into account the uncertainties in the emissivity and the noise-equivalent temperature. In this way several algorithms are provided for determining the AST, leaving to the choice of the reader the algorithm that best responds to the required accuracy and the available input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anding andR. Kauth:Remote Sensing Environ.,1, 217 (1970).

    Article  Google Scholar 

  2. C. Prabhakara, G. Dalu andV. G. Kunde:J. Geophys. Res.,79, 5039 (1974).

    ADS  Google Scholar 

  3. L. M. McMillian:J. Geophys. Res.,36, 5113 (1975).

    ADS  Google Scholar 

  4. P. Y. Deschamps andT. Phulpin:Boundary-Layer Met.,18, 131 (1980).

    Article  ADS  Google Scholar 

  5. E. P. McClain, W. G. Pichel andC. C. Walton:J. Geophys. Res. C,6, 11587 (1985).

    ADS  Google Scholar 

  6. D. Ho, A. Asem andP. Y. Deschamps:Int. J. Remote Sensing,10, 1323 (1986).

    Google Scholar 

  7. J. C. Price:J. Geophys. Res. D,5, 7231 (1984).

    ADS  Google Scholar 

  8. F. Becker andZ. L. Li:Int. J. Remote Sensing,11, 369 (1990).

    Google Scholar 

  9. J. A. Sobrino andV. Caselles:ISPRS J. Photogramm. Remote Sensing, in press (1993).

  10. J. A. Sobrino andV. Caselles:Int. J. Remote Sensing,12, 2461 (1991).

    Google Scholar 

  11. J. A. Sobrino, C. Coll andV. Caselles:Remote Sensing Environ.,38, 19 (1991).

    Article  Google Scholar 

  12. F. X. Kneizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby andS. A. Clough:Users guide to LOWTRAN 7, Technical Report AFGL-TR-88-0177, Optical/Infrared Technology Division, US Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts (1988).

    Google Scholar 

  13. C. Prabhakara, G. Dalu, R. C. Lo andN. R. Nath:Mon. Weather Rev.,107, 138 (1979)

    Article  Google Scholar 

  14. A. Chedin, N. A. Scott, N. Husson, J. F. Flobert, C. Levy andP. Moine:J. Quantum Spectrosc. Radiat. Transfer,3, 257 (1988).

    Article  ADS  Google Scholar 

  15. D. Chesters, L. W. Uccellini andW. D. Robinson:J. Climate Appl. Met.,22, 725 (1983).

    Article  ADS  Google Scholar 

  16. G. Dalu:Int. J. Remote Sensing,7, 1089 (1987).

    Google Scholar 

  17. P. Schluessel:Int. J. Remote Sensing,10, 705 (1988).

    Google Scholar 

  18. T. F. Eck andB. N. Holben:Vertical column precipitable water determinations over terrestrial surfaces from AVHRR thermal channels, inX Annual International Geoscience & Remote Sensing Symposium, Maryland (USA), 20–24 May 1990.

  19. K. J. K. Buettner andC. D. Kern:J. Geophys. Res.,70, 1329 (1965).

    Article  ADS  Google Scholar 

  20. F. Becker, F. Nerry, P. Ramanantsizehena andM. P. Stoll:Int. J. Remote Sensing 7, 1751 (1986).

    Google Scholar 

  21. J. W. Salisbury andN. M. Milton:Photogramm. Eng. Remote Sensing,54, 1301 (1988).

    Google Scholar 

  22. J. A. Sobrino andV. Caselles:An Fis. B,85, 220 (1989).

    Google Scholar 

  23. V. Caselles andJ. A. Sobrino:Remote Sensing Environ.,29, 135 (1989)

    Article  Google Scholar 

  24. V. Caselles, J. A. Sobrino andF. Becker:Int. J. Remote Sensing,9, 715 (1988).

    Google Scholar 

  25. J. A. Sobrino andV. Caselles:Remote Sensing Environ.,33, 193 (1990).

    Article  Google Scholar 

  26. J. A. Sobrino, V. Caselles andF. Becker:ISPRS J. Photogramm. Remote Sensing,44, 343 (1990).

    Article  Google Scholar 

  27. V. Caselles andJ. A. Sobrino:Remote Sensing for Hazard Monitoring and Disaster Assessment: Marine and Coastal Applications in the Mediterranean Region, edited byE. C. Barret, K. A. Brown andA. Micallef (Gordon and Breach, London, 1991), p. 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobrino, J.A., Caselles, V. & Coll, C. Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 16, 219–236 (1993). https://doi.org/10.1007/BF02524225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524225

PACS 92.60

PACS 42.68

Navigation