Skip to main content

Advertisement

Log in

Distribution, enrichment and sources of trace metals in the topsoil in the vicinity of a steel wire plant along the Silk Road economic belt, northwest China

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The West Development Program, initiated in 2000 by the central government of China, has attracted huge investments in the arid and semiarid regions of northwest China. As a consequence of this development, environmental pollution and ecological degradation have been widely reported. The Silk Road economic belt proposed by China promotes further economic development in the regions, but rational planning and regular monitoring are essential to minimize any additional negative impacts of the anthropogenic activities. This article reports an investigation on the distribution, enrichment and sources of trace metals in the topsoil in and around the Ningxia Hengli Steel Wire Plant (HSWP) situated along the Silk Road economic belt. The concentrations of Cd, Pb, Cr, Cu, Zn, Ni, Mn, V and Co in the surface soils of the study area vary, respectively, in the following ranges: 0.083–18.600, 21.9–2681.0, 58.0–100.0, 14.6–169.9, 59.0–4207.3, 19.3–40.8, 411–711, 55.2–76.6 and 7.46–25.21 mg/kg. The concentrations of Cd, Pb, Cr, Cu, Zn and Co are significantly higher than their local background values. Pollution levels of these trace metals in the surface soils were assessed using contamination index (C i f ), geo-accumulation index (I geo), modified contamination degree (mC d) and pollution load index. The potential ecological risks caused by the metal pollution were assessed by means of potential ecological risk factor (E i f ) and potential ecological risk index. The Spearman correlation and cluster analysis were applied to determine the contamination sources. The HSWP zone, associated with very high potential ecological risk caused by Pb and Cd, is more seriously contaminated by trace metals than the residential zone. This study indicates that Cd, Pb, Cu, Zn and Co mainly originate from industrial pollution, whereas Cr, Mn, Ni and V result from both industrial activities and natural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahim GMS (2005) Holocene sediments of Tamaki Estuary: characterization and impact of recent human activity on an urban estuary in Auckland, New Zealand. Ph.D. thesis, University of Auckland, Auckland

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238. doi:10.1007/s10661-007-9678-2

    Google Scholar 

  • Afzal M, Shabir G, Iqbal S, Mustafa T, Khan QM, Khalid ZM (2014) Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. Clean-Soil Air Water 42(8):1133–1139. doi:10.1002/clen.201100715

    Article  Google Scholar 

  • Allen F, Qian J, Qian M (2005) Law, finance, and economic growth in China. J Financ Econ 77:57–116. doi:10.1016/j.jfineco.2004.06.010

    Article  Google Scholar 

  • An Q, Wu Y, Taylor S, Zhao B (2009) Influence of the Three Gorges Project on saltwater intrusion in the Yangtze River Estuary. Environ Geol 56:1679–1686. doi:10.1007/s00254-008-1266-4

    Article  Google Scholar 

  • Arkoc O (2014) Heavy metal concentrations of groundwater in the East of Ergene Basin, Turkey. Bull Environ Contam Toxicol 93:429–433. doi:10.1007/s00128-014-1347-x

    Article  Google Scholar 

  • Atalar M, Kucuksezgin F, Duman M, Gonul LT (2013) Heavy metal concentrations in surficial and core sediments from Izmir Bay: an assessment of contamination and comparison against sediment quality benchmarks. Bull Environ Contam Toxicol 91:69–75. doi:10.1007/s00128-013-1008-5

    Article  Google Scholar 

  • Bhutiani R, Kulkarni DB, Khanna DR, Gautam A (2016) Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Expo Health 8(1):3–18. doi:10.1007/s12403-015-0178-2

    Article  Google Scholar 

  • Celis-Hernández O, Rosales-Hoz L, Carranza-Edwards A (2013) Heavy metal enrichment in surface sediments from the SW Gulf of Mexico. Environ Monit Assess 185:8891–8907. doi:10.1007/s10661-013-3222-3

    Article  Google Scholar 

  • Çevik F, Göksu MZL, Derici OB, Fındık Ö (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152:309–317. doi:10.1007/s10661-008-0317-3

    Article  Google Scholar 

  • Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, Cheng X (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52. doi:10.1016/j.gexplo.2013.08.012

    Article  Google Scholar 

  • Christou A, Eliadou E, Michael C, Hapeshi E, Fatta-Kassinos D (2014) Assessment of long-term wastewater irrigation impacts on the soil geochemical properties and the bioaccumulation of heavy metals to the agricultural products. Environ Monit Assess 186:4857–4870. doi:10.1007/s10661-014-3743-4

    Article  Google Scholar 

  • Díaz Rizo O, Fonticiella Morell D, Arado López JO, Borrell Muñoz JL, D‘Alessandro Rodríguez K, López Pino N (2013) Spatial distribution and contamination assessment of heavy metals in urban topsoils from Las Tunas City, Cuba. Bull Environ Contam Toxicol 91:29–35. doi:10.1007/s00128-013-1020-9

    Article  Google Scholar 

  • Galanopoulou S, Vgenopoulos A, Conispoliatis N (2009) Anthropogenic heavy metal pollution in the surficial sediments of the Keratsini Harbor, Saronikos Gulf, Greece. Water Air Soil Pollut 202:121–130. doi:10.1007/s11270-008-9962-y

    Article  Google Scholar 

  • Hakanson L (1980) An ecology risk index for aquatic pollution control: a sedimentological approach. Water Res 14(8):995–1001. doi:10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hu Y, Liu X, Bai J, Shih K, Zeng EY, Cheng H (2013) Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Pollut Res 20:6150–6159. doi:10.1007/s11356-013-1668-z

    Article  Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M (2013) Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ Earth Sci 70(4):1791–1808. doi:10.1007/s12665-013-2267-5

    Article  Google Scholar 

  • Lai TM, Lee W, Hur J, Kim Y, Huh IA, Shin HS, Kim CK, Lee JH (2013) Influence of sediment grain size and land use on the distributions of heavy metals in sediments of the Han River Basin in Korea and the assessment of anthropogenic pollution. Water Air Soil Pollut 224(7):1609. doi:10.1007/s11270-013-1609-y

    Article  Google Scholar 

  • Li P, Qian H (2011) Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, northwest China. Iran J Environ Health Sci Eng 8(1):41–48

    Google Scholar 

  • Li X, Poon C-S, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368. doi:10.1016/S0883-2927(01)00045-2

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2013) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69:2211–2225. doi:10.1007/s12665-012-2049-5

    Article  Google Scholar 

  • Li P, Qian H, Wu J (2014a) Accelerate research on land creation. Nature 510(7503):29–31. doi:10.1038/510029a

    Article  Google Scholar 

  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H (2014b) Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River, China. Environ Earth Sci 71(7):3133–3145. doi:10.1007/s12665-013-2691-6

    Article  Google Scholar 

  • Li P, Qian H, Howard KWF, Wu J, Lyu X (2014c) Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environ Monit Assess 186(3):1385–1398. doi:10.1007/s10661-013-3461-3

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2014d) Effects of irrigation with paper wastewater on soil fertility. In: Proceeding of the 2014 international conference on GIS and resource management (ICGRM 2014), DEStech Publications, Inc., pp 322–328. doi:10.13140/2.1.4661.3124

  • Li P, Qian H, Howard KWF, Wu J (2015a) Building a new and sustainable “Silk Road economic belt”. Environ Earth Sci. doi:10.1007/s12665-015-4739-2

    Google Scholar 

  • Li P, Qian H, Howard KWF, Wu J (2015b) Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ Earth Sci 73(7):3403–3415. doi:10.1007/s12665-014-3628-4

    Article  Google Scholar 

  • López-Galván E, Barceló-Quintal I, Solís-Correa HE, Bussy AL, Avila-Pérez P, Martínez Delgadillo S (2010) Calculation of the Ecological Risk Index in the José Antonio Alzate Dam, State of Mexico, Mexico. Biol Trace Elem Res 135:121–135. doi:10.1007/s12011-009-8501-z

    Article  Google Scholar 

  • Lu Z, Cai M, Wang J, Yin Z, Yang H (2013) Levels and distribution of trace metals in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. Environ Geochem Health 35:257–269. doi:10.1007/s10653-012-9481-z

    Article  Google Scholar 

  • Mahato MK, Singh PK, Tiwari AK, Singh AK (2016) Risk assessment due to intake of metals in groundwater of East Bokaro Coalfield, Jharkhand, India. Expo Health. doi:10.1007/s12403-016-0201-2

    Google Scholar 

  • Ministry of Environmental Protection of P. R. China (2008) Environmental quality standard for soils (GB 15618-2008). http://www.360doc.com/content/13/0502/19/7528373_282499540.shtml. Accessed 10 Jan 2016

  • Mohawesh O, Mahmoud M, Janssen M, Lennartz B (2014) Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. Int J Environ Sci Technol 11:927–934. doi:10.1007/s13762-013-0285-1

    Article  Google Scholar 

  • Nduka JK, Orisakwe OE (2011) Water-quality issues in the Niger Delta of Nigeria: a look at heavy metal levels and some physicochemical properties. Environ Sci Pollut Res 18:237–246. doi:10.1007/s11356-010-0366-3

    Article  Google Scholar 

  • Nwachukwu MA, Feng H, Alinnor J (2010) Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int J Environ Sci Technol 7(2):347–358

    Article  Google Scholar 

  • Praveena SM, Yuswir NS, Aris AZ, Hashim Z (2015) Contamination assessment and potential human health risks of heavy metals in Klang urban soils: a preliminary study. Environ Earth Sci 73(12):8155–8165. doi:10.1007/s12665-014-3974-2

    Article  Google Scholar 

  • Qian H, Li P, Howard KWF, Yang C, Zhang X (2012) Assessment of groundwater vulnerability in the Yinchuan Plain, northwest China using OREADIC. Environ Monit Assess 184:3613–3628. doi:10.1007/s10661-011-2211-7

    Article  Google Scholar 

  • Qian H, Li P, Tang H, Li M, Zhang Y, Wu J, Jin J, Liu H, Chen J, Jia H, Xu C, Chen Y (2014) Report of environmental impacts investigation and monitoring for heavy metal pollution in Shizuishan Industrial Park. Yinchuan, Center for Environmental Monitoring of Ningxia (in Chinese)

  • Rahman MS, Saha N, Molla AH (2014) Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ Earth Sci 71:2293–2308. doi:10.1007/s12665-013-2631-5

    Article  Google Scholar 

  • Raju KV, Somashekar RK, Prakash KL (2012) Heavy metal status of sediment in river Cauvery, Karnataka. Environ Monit Assess 184:361–373. doi:10.1007/s10661-011-1973-2

    Article  Google Scholar 

  • Rezapour S, Samadi A, Khodaverdiloo H (2012) Impact of long-term wastewater irrigation on variability of soil attributes along a landscape in semi-arid region of Iran. Environ Earth Sci 67:1713–1723. doi:10.1007/s12665-012-1615-1

    Article  Google Scholar 

  • Salehi F, Abdoli MA, Baghdadi M (2014) Sources of Cu, V, Cd, Cr, Mn, Zn Co, Ni, Pb, Ca and Fe in soil of Aradkooh landfill. Int J Environ Res 8(3):543–550

    Google Scholar 

  • Schacht K, Marschner B (2015) Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J Hydrol Hydromech 63(1):47–54. doi:10.1515/johh-2015-0010

    Article  Google Scholar 

  • Shah MH, Iqbal J, Shaheen N, Khan N, Choudhary MA, Akhter G (2012) Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environ Monit Assess 184:1243–1252. doi:10.1007/s10661-011-2036-4

    Article  Google Scholar 

  • Sharma K, Basta NT, Grewal PS (2015) Soil heavy metal contamination in residential neighborhoods in post-industrial cities and its potential human exposure risk. Urban Ecosyst 18(1):115–132. doi:10.1007/s11252-014-0395-7

    Article  Google Scholar 

  • Soffianian A, Madani ES, Arabi M (2014) Risk assessment of heavy metal soil pollution through principal components analysis and false color composition in Hamadan Province, Iran. Environ Syst Res 3:3. doi:10.1186/2193-2697-3-3

    Article  Google Scholar 

  • Subklew G, Ulrich J, Fürst L, Höltkemeier A (2010) Environmental impacts of the Yangtze Three Gorges project: an overview of the Chinese–German research cooperation. J Earth Sci 21(6):817–823. doi:10.1007/s12583-010-0133-x

    Article  Google Scholar 

  • Sun Z, Huang Q, Opp C, Hennig T, Marold U (2012) Impacts and implications of major changes caused by the Three Gorges Dam in the middle reaches of the Yangtze River, China. Water Resour Manage 26:3367–3378. doi:10.1007/s11269-012-0076-3

    Article  Google Scholar 

  • Thuong NT, Yoneda M, Shimada Y, Matsui Y (2015) Assessment of trace metal contamination and exchange between water and sediment systems in the To Lich River in inner Hanoi, Vietnam. Environ Earth Sci 73(7):3925–3936. doi:10.1007/s12665-014-3678-7

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72(2):175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  Google Scholar 

  • Wang Y, Jiao JJ (2012) Origin of groundwater salinity and hydrogeochemical processes in the confined quaternary aquifer of the Pearl River Delta, China. J Hydrol 438–439:112–124. doi:10.1016/j.jhydrol.2012.03.008

    Article  Google Scholar 

  • Wang L, Lu X, Ren C, Li X, Chen C (2014) Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environ Earth Sci 71(5):2095–2104. doi:10.1007/s12665-013-2613-7

    Article  Google Scholar 

  • WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. World Health Organization technical report series 778, Geneva

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36(1):169–182. doi:10.1007/s10653-013-9537-8

    Article  Google Scholar 

  • Wu J, Sun Z (2015) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health. doi:10.1007/s12403-015-0170-x

    Google Scholar 

  • Wu J, Li P, Qian H, Chen J (2013) Groundwater pollution in and around a paper wastewater-irrigated area, northwest China. In: Proceedings of the 2013 fourth international conference on digital manufacturing & automation (ICDMA). IEEE-CPS, New York, pp 649–652. doi:10.1109/ICDMA.2013.154

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982. doi:10.1007/s12517-013-1057-4

    Article  Google Scholar 

  • Wu J, Li P, Qian H (2015) Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci 73(12):8575–8588. doi:10.1007/s12665-015-4018-2

    Article  Google Scholar 

  • Yu J, Huang Z, Chen T, Qin D, Zeng X, Huang Y (2012) Evaluation of ecological risk and source of heavy metals in vegetable growing soils in Fujian province, China. Environ Earth Sci 65:29–37. doi:10.1007/s12665-011-1062-4

    Article  Google Scholar 

  • Zhang J, Deng H, Wang D, Chen Z, Xu S (2013) Toxic heavy metal contamination and risk assessment of street dust in small towns of Shanghai suburban area, China. Environ Sci Pollut Res 20:323–332. doi:10.1007/s11356-012-0908-y

    Article  Google Scholar 

  • Zhao H, Xia B, Fan C, Zhao P, Shen S (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci Total Environ 417–418:45–54. doi:10.1016/j.scitotenv.2011.12.047

    Article  Google Scholar 

  • Zhao D, Wan S, Yu Z, Huang J (2015) Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environ Earth Sci 74:5097–5110. doi:10.1007/s12665-015-4522-4

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Foundation of Outstanding Young Scholar of Chang’an University (310829153509), the General Financial Grant from the China Postdoctoral Science Foundation (2015M580804 and 2016M590911), the Research Funds for Young Stars in Science and Technology of Shaanxi Province (2016KJXX-29), the Special Financial Grant from the Shaanxi Postdoctoral Science Foundation, the Special Fund for Basic Scientific Research of Central Colleges (310829151072) and the National Natural Science Foundation of China (41502234). We are thankful to the laboratory workers from Ningxia Institute of Environmental Monitoring for their help in sample analysis. Anonymous reviewers and the Editor are sincerely acknowledged for their useful comments that have helped us a lot in improving the quality of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyue Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

This article is a part of a Topical Collection in Environmental Earth Sciences on “Advances of Research in Soil, Water, Environment, and Geologic Hazards Along the Silk Road” guest edited by Drs. Peiyue Li, Hui Qian and Wanfang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wu, J., Qian, H. et al. Distribution, enrichment and sources of trace metals in the topsoil in the vicinity of a steel wire plant along the Silk Road economic belt, northwest China. Environ Earth Sci 75, 909 (2016). https://doi.org/10.1007/s12665-016-5719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5719-x

Keywords

Navigation