Skip to main content

Advertisement

Log in

Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Isotopic compositions of CH4 and CO2 surface and subsurface gases and groundwater from an urban solid waste disposal site from Gualeguaychú city (Argentina) were measured to detect origin, depth distribution, migration lateral, CH4 oxidation, and dissolution in groundwater. The highest CH4 concentrations (60–88 %) with δ13C-CH4 (between −60 and −45 ‰) and δ2H-CH4 (between −350 and −260 ‰) were attributed to CH4 originated by microbial sources, v. gr. acetate fermentation. The δ13C-CO2 related to this CH4 (between −15 and −5.9 ‰) were compatible with this process. Also, the increase of DIC associated to an increase in δ13C-DIC values (−12.4, −6.4, −5.8, −1.5, +0.1 and +4 ‰) indicated the transport of dissolved gases (from methanogenesis) in the groundwater flow system. High excess deuterium in 3 piezometers suggests that there were hydrogen isotope exchange between CH4 and water too. Evidences for CH4 oxidation were decrease in CH4 concentrations, shift in C and H isotope ratios of CH4 to more enriched in the remaining CH4 (in both, δ13C-CH4 >−50 ‰ and δ2H >−260 ‰) and depletion in 13C of the associated CO2 (<−20 ‰). Since surface CH4 and CO2 concentrations over the covering layer were very low, and the major CH4 concentrations were found between 60m and 90 cm depth, it is very probable USW has been compacted with low permeability materials (e.g., clay) avoiding large emissions to the atmosphere and creating horizontal barriers within the waste that enable lateral gas migration. Horizontally, it can be seen that these gases migrated outside the disposal site following the topography and that CH4 disappeared leading to anomalous concentrations of CO2 whose values are greater than those produced by normal soil respiration. The isotopic value (δ13C) of this CO2 was also different from that of normal soil respiration (~−25 ‰) and reflected effects that generated isotopic depletion by diffusion (~−25 to −32 ‰). The analysis of C isotopes as the main tracer, together H isotopes, has allowed the effective detection of the origin and those secondary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ATSDR (2001) Agency for toxic substances and disease registry. Landfill gas primer—an overview for environmental health professionals. http://www.atsdr.cdc.gov/HAC/landfill/html/intro.html

  • Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38:4891–4899

    Article  Google Scholar 

  • Bergamaschi P (1997) Seasonal variations of stable hydrogen and carbon isotope ratios in methane from a Chinese rice paddy. J Geophys Res 102(D21):25383–25393

    Article  Google Scholar 

  • Bjerg PL, Albrechtsen HJ, Kjeldsen P, Christensen TH (2005) The groundwater geochemistry of waste disposal facilities. In: Sherwood Lollar B (ed) Environmental geochemistry Vol. 9. Treatise on geochemistry. Elsevier–Pergamon, Oxford, pp 579–612

  • Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the intergovernmental panel on climate change (IPCC). Fourth assessment report. Working group III (Mitigation). Waste Manag Res 26:11–32

    Article  Google Scholar 

  • Boujon P, Sanci R (2014) Evaluación de la vulnerabilidad del acuífero libre en la cuenca del Arroyo El Cura, Gualeguaychú. Entre Ríos Rev Asoc Geol Arg 71(2):274–289

    Google Scholar 

  • Castañeda SS, Sucgang RJ, Almoneda RV, Mendoza ND, David CPC (2012) Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines. J Environ Radioact 110:30–37

    Article  Google Scholar 

  • Cerling TE, Solomon DK, Quade JB, John R (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55(11):3403–3405

    Article  Google Scholar 

  • Chanton LC, Chasar P, Glaser D, Siegel (2005) Carbon and hydrogen isotopic effects in microbial methane from terrestrial environments. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stable isotopes and biosphere–atmosphere interactions, physiological ecology series. Elsevier–Academic Press, Amsterdam, pp 85–105 Chapter 6

    Chapter  Google Scholar 

  • Christophersen M, Kjeldsen P (2001) Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration. Waste Manage Res 19:144–159

    Article  Google Scholar 

  • Clark ID, Fritz M (1997) Tracing the carbon cycle. In: Environmental isotopes in hydrogeology, Lewis Publishers, New York, pp 111–136

  • Coleman DD, Risatti BJ, Schoell M (1981) Fraction of carbon and hydrogen isotopes by methane oxidizing bacteria. Geochim Cosmochim Acta 45:1033–1037

    Article  Google Scholar 

  • Coleman DD, Liu CL, Hacley KC, Benson LJ (1993) Identification of landfill methane using carbon and hydrogen isotope analysis. In: Proceedings of 16th international madison waste conference, municipal & industrial waste, Department of Engineering Professional Development, University of Wisconsin, Madison, pp 303–314

  • Conrad ME, Templeton AS, Daley PF, Alvarez-Cohen L (1999) Isotopic evidence for biological control on migration of petroleum hydrocarbons. Org Geochem 30:843–859

    Article  Google Scholar 

  • Cordero R, Panarello HO, Corvalán C, Galante G, Ostera HA (2004) Determinación experimental de 13C y 2H sobre metano. XXV Congreso Argentino de Química (resumen), Facultad de Ingeniería-UNCPBA, Olavarría, Buenos Aires

  • Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Dapeña C, Panarello HO (2004) Composición isotópica de la lluvia de Buenos Aires. Su importancia para el estudio de los sistemas hidrológicos pampeanos. Revista Latino-Americana de Hidrogeología 4:17–25

    Google Scholar 

  • Dapeña C, Panarello HO (2007) Estación Santa Fe. Red Nacional de Colectores, Argentina, V Congreso Argentino de Hidrogeología, Paraná, Entre Ríos, IAH Universidad Nacional de Entre Ríos, pp 187–198

  • De Visscher A, De Pourcq I, Chanton J (2004) Isotope fractionation effects by diffusion and methane oxidation in landfill cover soils. J Geophys Res 109:D18111. doi:10.1029/2004JD004857

    Article  Google Scholar 

  • Environment Agency UK (2010) Guidance on the management of landfill gas. http://www.environment-agency.gov.uk/business/sectors/108918.aspx#landfillgas

  • Gandhi H, Wiegner TN, Ostrom PH, Kaplan LA, Ostrom NE (2004) Isotopic (13C) analysis of dissolved organic carbon in stream water using an elemental analyzer coupled to a stable isotope ratio mass. Rapid Commun Mass Spectrom 18:903–906

    Article  Google Scholar 

  • Gat JR (2010) Isotope hydrology. A study of the water cycle. Centre for Environmental Technology. Imperial College, London, pp 70–71

    Google Scholar 

  • Hackley KC, Liu CL, Coleman DD (1996) Environmental isotope characteristics of landfill leachates and gases. Ground Water 34(5):827–836

    Article  Google Scholar 

  • Hackley KC, Liu CL, Traidor D (1999) Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities. Appl Geochem 14:119–131

    Article  Google Scholar 

  • Hornibrook ERC, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Ac 64(6):1013–1027

    Article  Google Scholar 

  • Kerfoot HB (1994) Landfill gas effects on groundwater samples at a municipal solid waste facility. J Air Waste Manage Assoc 44:1293–1298

    Article  Google Scholar 

  • Kerfoot HK, Baker JA, Burt DM (2003) The use of isotopes to identify landfill gas effects on groundwater. J Environ Monit 5:896–901

    Article  Google Scholar 

  • Kjeldsen P, Morton A, Barlaz A, Rooker P, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    Article  Google Scholar 

  • Kumar S, Mondal AN, Gaikwad SA, Devotta S, Singh RN (2004) Qualitative assessment of methane emission inventory from municipal solid waste disposal: a case study. Atmos Environ 38:4921–4929

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lomond JS, Tong AZ (2011) Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography. J Chromatogr Sci 49:469–475

    Article  Google Scholar 

  • MacCrea JM (1950) On the isotopic chemistry of carbonates and paleotemperature scale. J Chem Phys 18(6):849–857

    Article  Google Scholar 

  • Mahieu K, De Visscher A, Vanrolleghem PA, Van Cleemput O (2008) Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils. Waste Manag 28:1535–1542

    Article  Google Scholar 

  • Mook WG (2000) Environmental isotopes in the hydrological cycle. In: Mook WG (ed) Principles and applications, vol I. UNESCO, Paris, pp 96–101

    Google Scholar 

  • Panarello HO, Garcia CM, Valencia SA, Linares E (1982) Determinación de la composición isotópica del carbono en carbonatos, su utilización en Hidrogeología y Geología. Rev Asoc Geol Arg XXXV(4): 460–466

  • Panarello HO, Dapeña C, Ostera HA, Stöckli F (2005) Caracterización química e isotópica preliminar del Basurero Municipal de Gualeguaychú, provincia de Entre Ríos, República Argentina. IV Congreso Argentino de Hidrogeología, Río Cuarto, Universidad Nacional de Río Cuarto, 197–205

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC—a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour Invest Rep 99-4259 US Geol Surv, Denver

  • Pumpanen J, Kolari P, Lvesniemi H, Minkkinen K, Vesala N, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Gru¨nzweig JM, Reth S, Subke J, Savage K, Kutsch W, Ø ´Streng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176

    Article  Google Scholar 

  • Sanci R, Panarello HO, Ostera HA (2012) CO2 emissions from a municipal site for final disposal of solid waste in Gualeguaychu, Entre Rios Province, Argentina. Environ Earth Sci 66:519–528

    Article  Google Scholar 

  • SEPA (2004) Scottish environment protection agency. Guidance on the management of landfill gas. http://www.sepa.org.uk/waste/waste_regulation/landfill.aspx

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Environmental Science and Technology, New York, p 461

    Google Scholar 

  • Valencio S, Ostera HA, Panarello H (2003) Monitoring 13C in CO2 soil gas from a landfill: first results from a case study. IV South American symposium on isotope geology, Short papers I: 128–130, Salvador, Brasil

  • Van Breukelen BM, Roling FM, Groen J, Griffioen J, Van Verseveld HW (2003) Biogeochemistry and isotope geochemistry of a landfill leachate plume. J Contam Hydrol 65:245–268

    Article  Google Scholar 

  • Wassenaar LI, Coplen TB, Aggarwal PK (2014) Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers. Environ Sci Technol 48(2):1123–1131

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Instituto de Geocronología y Geología Isotópica (UBA-CONICET) and PICT 2010 Nro. 2749. The authors are grateful to Stable Isotopes Laboratory staff members, Estela Ducos and Eduardo Llambias and Gabriel Giordarengo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Sanci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanci, R., Panarello, H.O. Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas. Environ Earth Sci 75, 294 (2016). https://doi.org/10.1007/s12665-015-4906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4906-5

Keywords

Navigation