Skip to main content
Log in

Joint uncertainty analysis in river water quality simulation: a case study of the Karoon River in Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Estimating rivers’ responses to natural and man-made changes is of high importance in river water quality management. It is also necessary to incorporate uncertainties in planning and management of these important systems. The aim of this paper is simultaneously analyzing uncertainties of inputs and parameters of a river water quality simulation model using a novel Markov chain Monte Carlo technique, namely differential evolution adaptive metropolis (DREAM). This technique helps to consider the interaction between the input variables and parameters in water quality simulation results. A DREAM-based uncertainty analysis model is linked with the QUAL2K simulation model to incorporate uncertainties of several inputs and parameters such as headwater quantity and quality, pollution loads and reaeration parameters. A part of the Karoon River located at the southwestern part of Iran is selected for the case study. The results illustrate that the interactions among the parameters and inputs should be taken into account in river water quality simulation. The methodology presented in this paper can accurately provide the statistical characteristics of parameters of the water quality simulation model using the observed values of several water quantity and quality variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abrishamchi A, Tajrishi M, Shafieian P (2005) Uncertainty analysis in QUAL2E model of Zayandeh-Rood river. Water Environ Res 77(3):279–286

    Article  Google Scholar 

  • Ajami NK, Duan Q, Sorooshian S (2006) An integrated hydrologic Bayesian multi-model combination framework: confronting input, parameter and model structural uncertainty in hydrologic prediction. Water Resour Res 43:W01403. doi:10.1029/2005WR004745

    Google Scholar 

  • Beven K, Binley A (1992) Future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298

    Article  Google Scholar 

  • Cardona CM, Martin C, Salterain A, Castro A, San Martín D, Ayesa E (2011) Calhidra 3.0 new software application for river water-quality prediction based on RWQM1. Environ Model Softw 26:973–979

    Article  Google Scholar 

  • Chapra SC (1997) Surface water quality modeling. The McGraw-Hill Companies, Inc., New York

    Google Scholar 

  • Chapra SC, Pelletier GJ (2003) QUAL2K: a modeling frame work for simulating river and stream water-quality: documentation and user’s manual. Civil and Environmental Department, Tufts University, Medford, MA

    Google Scholar 

  • Chapra SC, Pelletier GJ, Tao H (2007) QUAL2K: a modeling framework for simulating river and stream water quality: documentation and user’s manual. Civil and Environmental Engineering Department, Tufts University, Medford, MA

    Google Scholar 

  • Cho JH, Ha SR (2010) Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm. Sci Total Environ 408:1985–1991

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Huisman J, Rings J, Vrugt J, Sorg J, Vereecken H (2010) Vadose zone model-data fusion: state of the art and future challenges. J Hydrol 380:62–73

    Article  Google Scholar 

  • Kannel PR, Lee S, Lee YS, Kanel SR, Pelletier GJ (2007) Application of automated QUAL2Kw for water quality modeling and management in the Bagmati river Nepal. Ecol Model 202:503–517

    Article  Google Scholar 

  • Karamouz M, Nazif S, Tavakolifar H (2009a) Assessing the risk of utilization of the urban refinement system. In: Proceedings of 8th international conference in civil engineering, Shiraz University, Shiraz, Iran (In Farsi)

  • Karamouz M, Kerachian R, Akhbari M, Hafez B (2009b) Design of river water quality monitoring networks: a case study. Environ Model Assess 14(6):705–714

    Article  Google Scholar 

  • Karamouz M, Mojahedi S, Ahmadi A (2010) Interbasin water transfer: economic water quality-based model. J Irrig Drain Eng 136(2):90–98

    Article  Google Scholar 

  • Karaouzas I, Dimitriou E, Skoulikidis N, Gritzalis K, Colombari E (2009) Linking hydrogeological and ecological tools for an integrated river catchment assessment. Environ Model Assess 14:677–689

    Article  Google Scholar 

  • Kerachian R, Karamouz M (2006) Waste-load allocation model for seasonal river water quality management: application of sequential dynamic genetic algorithms. Scientia Irancia 12(2):117–130

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. J Hydrol 211:69–85

    Article  Google Scholar 

  • Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resour Res 48:W01526. doi:10.1029/2011WR010608

    Google Scholar 

  • Mannina G, Viviani G (2010) Water-quality modelling for ephemeral rivers: model development and parameter assessment. J Hydrol 393:186–196

    Article  Google Scholar 

  • Memarzadeh M, Mahjouri N, Kerachian R (2013) Evaluating sampling locations in river water quality monitoring networks: application of dynamic factor analysis and discrete entropy theory. Environ Earth Sci 70(6):2577–2585

    Article  Google Scholar 

  • Nakhaei N, Etemad-Shahidi A (2012) Applying Monte Carlo and classification tree sensitivity analysis to the Zayandehrood river. J Hydroinf 14:236–250

    Article  Google Scholar 

  • Nikoo MR, Kerachian R, Karimi A, Azadnia AA, Jafarzadegan K (2013) Optimal water and waste load allocation in reservoir–river systems: a case study. Environ Earth Sci 79(9):4127–4142

    Google Scholar 

  • Niksokhan MH, Kerachian R, Karamouz M (2009) A game theoretic approach for trading discharge permits in rivers. Water Sci Technol 60(3):793–804

    Article  Google Scholar 

  • Page T, Heathwaite AL, Moss B, Reynolds C, Beven KJ, Pope L, Willows R (2012) Managing the impacts of nutrient enrichment on river systems: dealing with complex uncertainties in risk analyses. Freshw Biol 57:108–123

    Article  Google Scholar 

  • Pluntke T, Pavlik D, Bernhofer C (2014) Reducing uncertainty in hydrological modelling in a data sparse region. Environ Earth Sci. doi:10.1007/s12665-014-3252-3

    Google Scholar 

  • Possolo A (2010) Copulas for uncertainty analysis. J Metrol 47:262–271

    Article  Google Scholar 

  • Reckhow KH (1994) Water quality simulation modeling and uncertainty analysis for risk assessment and decision making. Ecol Model 72:1–20

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Hojberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process: a framework and guidance. Environ Model Softw 22:1543–1556

    Article  Google Scholar 

  • Starrfelt J, Kaste Ø (2014) Bayesian uncertainty assessment of a semi-distributed integrated catchment model of phosphorus transport. Environ Sci Proces Impacts. doi:10.1039/C3EM00619K

  • TerBraak CJF (2006) A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat Comput 16:239–249

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Vrugt JA, TerBraak CJF, Clark MP, Hyman JM, Robinson BA (2008a) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res, 44, W00B09. doi:10.1029/2007WR006720

  • Vrugt JA, TerBraak CJF, Gupta HV, Robinson BA (2008b) Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23:1011–1026

    Article  Google Scholar 

  • Vrugt JA, TerBraak CJF, Diks CGH, Robinson BA, Hyman JM (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):271–288

    Article  Google Scholar 

  • Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19:378–387

    Article  Google Scholar 

  • Walker WE, Harremoes P, Rotmans J, van der Sluijs JP, van Asselt MBA, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4:5–17

    Article  Google Scholar 

  • Ye HF, Guo SH, Li FM, Li G (2013) Water quality evaluation in Tidal River reaches of Liaohe river estuary, China using a revised QUAL2K model. Chin Geogr Sci 23:301–311

    Article  Google Scholar 

  • Zhang RB, Qian X, Li HM, Yuan XC, Ye R (2012) Selection of optimal river water quality improvement programs using QUAL2K: a case study of Taihu lake basin, China. Sci Total Environ 431:278–285

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the ideas and comments of Mehrdad Gholami and Ali Mojahedi, graduate students at the School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Shojaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, M., Nazif, S. & Kerachian, R. Joint uncertainty analysis in river water quality simulation: a case study of the Karoon River in Iran. Environ Earth Sci 73, 3819–3831 (2015). https://doi.org/10.1007/s12665-014-3667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3667-x

Keywords

Navigation