Skip to main content
Log in

3-D interpolation of subsurface temperature data with measurement error using kriging

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A computer program called jk3d for 3-D ordinary kriging interpolation of scattered data has been developed. A specific feature of the code is that differences of the quality of the measured data are taken into account by weighting them according to the assumed error of the data. The code is demonstrated on subsurface temperature measurements with different measurement errors. One of the main problems when ordinary kriging is used for 3-D subsurface data is a lack of sufficient data for computing the necessary variograms. A feasible procedure to obtain such a variogram is discussed. The final result of the 3-D interpolated temperature data shows, that the quality of the interpolation increases substantially if the measurement error is taken into account. The code uses a modified GSLIB like input. Although not all functions of the GSLIB kriging library are supported, all substantial functions are available. jk3d is LGPL licensed, open source. The current version is available at http://sourceforge.net/projects/jk3d.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See http://math.nist.gov/javanumerics/jama/.

References

  • Agemar T, Schellschmidt R, Schulz R (2012) Subsurface temperature distribution in germany. Geothermics 44(0):65–77. doi:10.1016/j.geothermics.2012.07.002

  • Bächler D, Kohl T, Rybach L (2003) Impact of graben-parallel faults on hydrothermal convection—Rhine Graben case study. Phys Chem Earth 28(9–11):431–441

    Article  Google Scholar 

  • Bonte D, Guillou-Frottier L, Garibaldi C, Lopez S, Bourgine B, Lucazeau F, Bouchot V (2010) Subsurface temperature maps in French sedimentary basins: new data compilation and new interpolation. Bull Soc Gol Fr 181(4):377–390

    Article  Google Scholar 

  • Bredehoeft J, Papadopulos I (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Res Res 1:325–328

    Article  Google Scholar 

  • Budrikaité L, Dučinskas K (2005) Modelling of geometric anisotropic spatial variation. In: Proceedings of the 10th international conference of mathematical modelling and analysis (MMA’05)&CMAM2. Technika, Trakai, pp 361–366

  • Chilès J, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Chilès JP, Gable R (1984) Three dimensional modelling of a geothermal field. Geostatistics for natural resources characterization, Part 2. D. Reidel Publish. Comp, Hingbam, pp 587–598

    Chapter  Google Scholar 

  • Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York

    Google Scholar 

  • Delhomme J (1978) Kriging in the hydrosciences. Adv Water Resour 1(5):251–266. doi:10.1016/0309-1708(78)90039-8, http://www.sciencedirect.com/science/article/pii/0309170878900398

  • Deming D (1989) Application of bottom-hole temperature corrections in geothermal studies. Geothermics 18:775–786

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and users’s guide, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Garibaldi C, Guillou-Frottier L, Lardeaux JM, Bonte D, Lopez S, Bouchot VPL (2010) Relationship between thermal anomalies, geological structures and fluid flow: new evidence in application to the Provence basin (southeast France). Bull Soc Gol Fr 181(4):363–376

    Article  Google Scholar 

  • Goutorbe B, Lucazeau E, Bonneville A (2007) Comparison of several BHT correction methods: a case study on an Australian data set. Geophys J Int 170:913–922

    Article  Google Scholar 

  • Haenel R, Zoth G (1982) Temperature measurements and determination of heat flow density. The Urach geothermal project. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 81–88

    Google Scholar 

  • Huenges E, Kohl T, Kolditz O, Bremer J, Scheck-Wenderoth M, Vienken T (2013) Geothermal energy systems: research perspective for domestic energy provision. Environ Earth Sci 70(8):3927–3933. doi:10.1007/s12665-013-2881-2

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Kitanidis P (1997) Introduction to geostatistics, applications in hydrogeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Luijendijk E, ter Voorde M, van Balen R, Verweij H, Simmelink E (2011) Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System. Basin Res 23(1):65–82. doi:10.1111/j.1365-2117.2010.00466.x

  • Mansure AJ, Reiter M (1979) A vertical groundwater movement heat flow correction. J Geophys Res 84(B7):3490–3496

    Article  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris

    Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280. doi:10.1029/93RG01249

  • Pribnow D, Schellschmidt R (2000) Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophys Res Lett 27(13):1957–1960

    Article  Google Scholar 

  • Rühaak W (2006) A Java application for quality weighted 3-D interpolation. Comput Geosci 32(1):43–51. doi:10.1016/j.cageo.2005.04.005

    Article  Google Scholar 

  • Rühaak W, Rath V, Clauser C (2010) Detecting thermal anomalies within the Molasse Basin, southern Germany. Hydrogeol J 18:1897–1915. doi:10.1007/s10040-010-0676-z

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79(47):579–579. doi:10.1029/98EO00426

Download references

Acknowledgments

For plotting the temperature maps the free software GMT (Wessel and Smith 1988) was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Rühaak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rühaak, W. 3-D interpolation of subsurface temperature data with measurement error using kriging. Environ Earth Sci 73, 1893–1900 (2015). https://doi.org/10.1007/s12665-014-3554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3554-5

Keywords

Navigation