Environmental Earth Sciences

, Volume 73, Issue 4, pp 1893–1900

3-D interpolation of subsurface temperature data with measurement error using kriging

Original Article

Abstract

A computer program called jk3d for 3-D ordinary kriging interpolation of scattered data has been developed. A specific feature of the code is that differences of the quality of the measured data are taken into account by weighting them according to the assumed error of the data. The code is demonstrated on subsurface temperature measurements with different measurement errors. One of the main problems when ordinary kriging is used for 3-D subsurface data is a lack of sufficient data for computing the necessary variograms. A feasible procedure to obtain such a variogram is discussed. The final result of the 3-D interpolated temperature data shows, that the quality of the interpolation increases substantially if the measurement error is taken into account. The code uses a modified GSLIB like input. Although not all functions of the GSLIB kriging library are supported, all substantial functions are available. jk3d is LGPL licensed, open source. The current version is available at http://sourceforge.net/projects/jk3d.html.

Keywords

Subsurface temperature data Ordinary kriging 3-D interpolation Scattered data interpolation Quality weighted interpolation Erroneous data Java 

References

  1. Agemar T, Schellschmidt R, Schulz R (2012) Subsurface temperature distribution in germany. Geothermics 44(0):65–77. doi:10.1016/j.geothermics.2012.07.002
  2. Bächler D, Kohl T, Rybach L (2003) Impact of graben-parallel faults on hydrothermal convection—Rhine Graben case study. Phys Chem Earth 28(9–11):431–441CrossRefGoogle Scholar
  3. Bonte D, Guillou-Frottier L, Garibaldi C, Lopez S, Bourgine B, Lucazeau F, Bouchot V (2010) Subsurface temperature maps in French sedimentary basins: new data compilation and new interpolation. Bull Soc Gol Fr 181(4):377–390CrossRefGoogle Scholar
  4. Bredehoeft J, Papadopulos I (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Res Res 1:325–328CrossRefGoogle Scholar
  5. Budrikaité L, Dučinskas K (2005) Modelling of geometric anisotropic spatial variation. In: Proceedings of the 10th international conference of mathematical modelling and analysis (MMA’05)&CMAM2. Technika, Trakai, pp 361–366Google Scholar
  6. Chilès J, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  7. Chilès JP, Gable R (1984) Three dimensional modelling of a geothermal field. Geostatistics for natural resources characterization, Part 2. D. Reidel Publish. Comp, Hingbam, pp 587–598CrossRefGoogle Scholar
  8. Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421CrossRefGoogle Scholar
  9. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  10. Delhomme J (1978) Kriging in the hydrosciences. Adv Water Resour 1(5):251–266. doi:10.1016/0309-1708(78)90039-8, http://www.sciencedirect.com/science/article/pii/0309170878900398
  11. Deming D (1989) Application of bottom-hole temperature corrections in geothermal studies. Geothermics 18:775–786CrossRefGoogle Scholar
  12. Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and users’s guide, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  13. Garibaldi C, Guillou-Frottier L, Lardeaux JM, Bonte D, Lopez S, Bouchot VPL (2010) Relationship between thermal anomalies, geological structures and fluid flow: new evidence in application to the Provence basin (southeast France). Bull Soc Gol Fr 181(4):363–376CrossRefGoogle Scholar
  14. Goutorbe B, Lucazeau E, Bonneville A (2007) Comparison of several BHT correction methods: a case study on an Australian data set. Geophys J Int 170:913–922CrossRefGoogle Scholar
  15. Haenel R, Zoth G (1982) Temperature measurements and determination of heat flow density. The Urach geothermal project. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 81–88Google Scholar
  16. Huenges E, Kohl T, Kolditz O, Bremer J, Scheck-Wenderoth M, Vienken T (2013) Geothermal energy systems: research perspective for domestic energy provision. Environ Earth Sci 70(8):3927–3933. doi:10.1007/s12665-013-2881-2
  17. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, OxfordGoogle Scholar
  18. Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press, LondonGoogle Scholar
  19. Kitanidis P (1997) Introduction to geostatistics, applications in hydrogeology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Luijendijk E, ter Voorde M, van Balen R, Verweij H, Simmelink E (2011) Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System. Basin Res 23(1):65–82. doi:10.1111/j.1365-2117.2010.00466.x
  21. Mansure AJ, Reiter M (1979) A vertical groundwater movement heat flow correction. J Geophys Res 84(B7):3490–3496CrossRefGoogle Scholar
  22. Matheron G (1965) Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, ParisGoogle Scholar
  23. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280. doi:10.1029/93RG01249
  24. Pribnow D, Schellschmidt R (2000) Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophys Res Lett 27(13):1957–1960CrossRefGoogle Scholar
  25. Rühaak W (2006) A Java application for quality weighted 3-D interpolation. Comput Geosci 32(1):43–51. doi:10.1016/j.cageo.2005.04.005 CrossRefGoogle Scholar
  26. Rühaak W, Rath V, Clauser C (2010) Detecting thermal anomalies within the Molasse Basin, southern Germany. Hydrogeol J 18:1897–1915. doi:10.1007/s10040-010-0676-z
  27. Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, BerlinCrossRefGoogle Scholar
  28. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79(47):579–579. doi:10.1029/98EO00426

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geothermal Science and Technology, Institute of Applied GeosciencesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations