Skip to main content
Log in

Compression of remote sensing data using second-generation wavelets: a review

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Wavelet-based methods have been widely used for compression of remotely sensed images and data. Recently, second generation of wavelets which is based on a method called lifting has proven to be more effective than traditional wavelets as it provides lossless compression, lowers the memory usage, and is computationally faster. This study explores the literature related to applying second-generation wavelets for the compression of remote sensing data. Nevertheless, in order to compare the results of two wavelet types, some applications of traditional wavelets are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MD, Kossentni F (2000) Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans Image Process 9(6):1010–1024

    Article  Google Scholar 

  • Blackburn GA (2007) Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. Int J Remote Sens 28(12):2831–2855

    Article  Google Scholar 

  • Boettcher JB, Qian D, Fowler JE (2007) Hyperspectral image compression with the 3D dual-tree wavelet transform. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp 1033–1036

  • Cannata A, Giudice G, Gurrieri S, Montalto P, Alparone S, Di Grazia G, Favara R, Gresta S, Liuzzo M (2010) Relationship between soil CO2 flux and volcanic tremor at Mt. Etna: implications for magma dynamics. Environ Earth Sci 61(3):477–489

    Article  Google Scholar 

  • Chinarro D, Villarroel JL, Cuchí JA (2012) Wavelet analysis of Fuenmayor karst spring, San Julián de Banzo, Huesca, Spain. Environ Earth Sci 65(8):2231–2243

    Article  Google Scholar 

  • Ebadi L, Shafri HZM, Mansor SB, Ashurov R (2013) A review of applying second-generation wavelets for noise removal from remote sensing data. Environ Earth Sci. doi:10.1007/s12665-013-2325-z

  • Ephremidze L, Gamkrelidze A, Lagvilava E (2013) An approximation of Daubechies wavelet matrices by perfect reconstruction filter banks with rational coefficients. Adv Comput Math 38(1):147–158

    Article  Google Scholar 

  • Fang–Fang H, Fa-Jie D, Xiao-Jie D, Chao Z (2010) Design of odd number rational coefficients symmetric compactly-supported biorthogonal wavelet filters. In: 2010 3rd International Conference on Computer Science and Information Technology (ICCSIT), pp 76–80

  • Gomez C (2012) Multi-scale topographic analysis of Merbabu and Merapi volcanoes using wavelet decomposition. Environ Earth Sci 67(5):1423–1430

    Article  Google Scholar 

  • Guo H, Qian C (2008) Invariant texture classification for remote sensing image in wavelet domain. J Geomatics 33(4):33–35

    Google Scholar 

  • Han JW, Fang JD (2008) Research on remote sensing image compression based on lifting wavelet transform. In: 2008 International Conference on MultiMedia and Information Technology (MMIT), pp 205–208

  • Hou X, Yang J, Jiang G, Qian X (2013) Complex SAR image compression based on directional lifting wavelet transform with high clustering capability. IEEE Trans Geosci Remote Sens 51(1):527–538

    Article  Google Scholar 

  • Huang B, Huang HL, Ahuja A, Chen H, Schmit TJ, Heymann RW (2004) Lossless data compression for infrared hyperspectral sounders—An overview. Bull Am Meteorol Soc, pp 1701–1713

  • Huang J, Cheng G, Liu Z, Zhu C, Xiu B (2012) Synthetic aperture radar image compression using tree-structured edge-directed orthogonal wavelet packet transform. AEU Int J Electron Commun 66(3):195–203

    Article  Google Scholar 

  • Huang F, Xia Z, Li F, Wu T (2013) Assessing sediment regime alteration of the upper Yangtze River. Environ Earth Sci, pp 1–9

  • Karami A, Yazdi M, Mercier G (2011) Hyperspectral image compression based on tucker decomposition and wavelet transform. In: Workshop on hyperspectral image and signal processing, evolution in remote sensing

  • Kempeneers P, De Backer S, Debruyn W, Coppin P, Scheunders P (2005) Generic wavelet-based hyperspectral classification applied to vegetation stress detection. IEEE Trans Geosci Remote Sens 43(3):610–614

    Article  Google Scholar 

  • Khan W (2011) Low complexity implementation of Daubechies wavelets for medical imaging applications, discrete wavelet transforms—algorithms and applications, Prof. Hannu Olkkonen (ed) ISBN:978-953-307-482-5, In Tech, Available from: http://www.intechopen.com/books/discrete-wavelet-transformsalgorithms-and-applications/low-complexity-implementation-of-daubechies-wavelets-for-medical-imagingapplications

  • Kousalyadevi R, Ramakrishnan SS (2012) Performance analysis of multi spectral band image compression using discrete wavelet transform. J Comput Sci 8(5):789–795

    Article  Google Scholar 

  • Li T, Wu W (2008) Remote sensing image compression based on orientation-adaptive wavelet. In: 2008 2nd International symposium on systems and control in aerospace and astronautics (ISSCAA)

  • Li B, Yang R, Jiang H (2011) Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Trans Geosci Remote Sens 49(1 (part 1)):236–250

    Article  Google Scholar 

  • Liyakathunisa, Ravi Kumar CN, Ananthashayana VK (2009) Super resolution reconstruction of compressed low resolution images using wavelet lifting schemes. In: 2009 International conference on computer and electrical engineering (ICCEE), pp 629–633

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  • Mao J (2012) Noise reduction for lidar returns using local threshold wavelet analysis. Opt Quantum Electron 43(1–5):59–68

    Article  Google Scholar 

  • Miao C, Yang L, Liu B, Gao Y, Li S (2011) Streamflow changes and its influencing factors in the mainstream of the Songhua River basin, Northeast China over the past 50 years. Environ Earth Sci 63(3):489–499

    Article  Google Scholar 

  • Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2007) Wavelets and their applications. ISTE Ltd., USA

    Book  Google Scholar 

  • Motta G, Rizzo F, Storer JA (2006) Hyperspectral data compression. Springer, USA

    Book  Google Scholar 

  • Nichols S, Kim H, Humos AA, Cho HJ (2009) A performance evaluation on DCT and wavelet-based compression methods for remote sensing images based on image content. In: 17th International conference on geoinformatics

  • Pan W, Zou Y, Ao L (2008) A compression algorithm of hyperspectral remote sensing image based on 3-D wavelet transform and fractal. In: 3rd International conference on intelligent system and knowledge engineering (ISKE), pp 1237–1241

  • Peng J, Shen H, He SW, Wu JS (2013) Soil moisture retrieving using hyperspectral data with the application of wavelet analysis. Environ Earth Sci 69(1):279–288

    Article  Google Scholar 

  • Pradhan B, Kumar S, Mansor S, Ramli AR, Mohamed Sharif ARB (2006) Spatial data compression and denoising via wavelet transformation. Appl GIS 2(1):6.1–6.16

    Article  Google Scholar 

  • Qi HM, Hua B, Li X, Yu WD, Hong W (2012) A universal adaptive vector quantization algorithm for space-borne SAR raw data. Sci China Inf Sci 55(6):1280–1289

    Article  Google Scholar 

  • Shafri HZM, Mather PM (2005) Wavelet shrinkage in noise removal of hyperspectral remote sensing data. Am J Appl Sci 2(7):5

    Google Scholar 

  • Shafri HZM, Yusof MRM (2009) Determination of optimal wavelet denoising parameters for red edge feature extraction from hyperspectral data. J Appl Remote Sens 3(1):033533

    Article  Google Scholar 

  • Shafri HZM, Taherzadeh E, Mansor S, Ashurov R (2012) Hyperspectral remote sensing of urban areas: an overview of techniques and applications. Res J Appl Sci Eng Tech 4(11):1557–1565

    Google Scholar 

  • Siala K, Benazza-Benyahia A (2004) Hyperspectral image compression through spectral clustering. In: International symposium on control, communications and signal processing (ISCCSP), pp 435–438

  • Singh VK (1999) Discrete wavelet transform based image compression. Int J Remote Sens 20(17):3399–3405

    Article  Google Scholar 

  • Song D, Hu L, Feng Y (2009) Hyperspectral image compression based on wavelets and uniform directional filter banks. In: 2009 World congress on computer science and information engineering, pp 129–133

  • Sui X, Qin Q, Jin C, Sun Y (2008) Aerial remote sensing image compression based on modified CDF97 lifting scheme. In: 2nd International symposium on intelligent information technology application (IITA), pp 648–652

  • Sui YP, Yang CY, Liu YJ, Wang J, Wei ZH, He X (2008b) Remote sensing image compression algorithm based on wavelet sub-bands entropy. Guangdian Gongcheng/Opto-El Eng 35(2):61–65, 133

    Google Scholar 

  • Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200

    Article  Google Scholar 

  • Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29(2):511–546

    Article  Google Scholar 

  • Tang X, Pearlman WA, Modestino JW (2003) Hyperspectral image compression using three-dimensional wavelet coding. In: The International society for optical engineering, pp 1037–1047

  • Tian H, Wen J, Wang C, Liu R, Lu D (2012) Effect of pixel scale on evapotranspiration estimation by remote sensing over oasis areas in north-western China. Environ Earth Sci 67(8):2301–2313

    Article  Google Scholar 

  • Tieniu W, Guangyong L (2012) Climatic sub-cycles recorded by the fourth paleosol layer at Luochuan on the Loess Plateau. Environ Earth Sci 66(5):1329–1335

    Article  Google Scholar 

  • Verhoef W (2001) Spectral PPCA transform and spatial wavelets using lifting technique for data compression of digital hyperspectral images. In: The international society for optical engineering, pp 203–213

  • Yifan Z, De Backer S, Scheunders P (2009) Noise-resistant wavelet-based bayesian fusion of multispectral and hyperspectral images. IEEE Trans Geosci Remote Sens 47(11):3834–3843

    Article  Google Scholar 

  • Yu XC, Ni F, Long SL, Pei WJ (2012) Remote sensing image fusion based on integer wavelet transformation and ordered nonnegative independent component analysis. GISci Remote Sens 49(3):364–377

    Article  Google Scholar 

  • Zabala A, Pons X (2013) Impact of lossy compression on mapping crop areas from remote sensing. Int J Remote Sens 34(8):2796–2813

    Article  Google Scholar 

  • Zhang J, Liu G (2007) A novel lossless compression for hyperspectral images by context-based adaptive classified arithmetic coding in wavelet domain. IEEE Geosci Remote Sens Lett 4(3):461–465

    Article  Google Scholar 

  • Zhen W, Shiyin L, Shiqiang Z, Honglang X (2013) Internal structure and trend of glacier change assessed by geophysical investigations. Environ Earth Sci 68(6):1513–1525

    Article  Google Scholar 

  • Zhou GZ, Yang FJ, Wang CZ (2008) Vegetation field spectrum denoising via lifting wavelet transform. J Coal Sci Eng 14(1):131–135

    Article  Google Scholar 

  • Zhu L, Meng J (2010) Study on rainfall variations in the middle part of Inner Mongolia, China during the past 43 years. Environ Earth Sci 60(8):1661–1671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladan Ebadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebadi, L., Shafri, H.Z.M. Compression of remote sensing data using second-generation wavelets: a review. Environ Earth Sci 71, 1379–1387 (2014). https://doi.org/10.1007/s12665-013-2544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2544-3

Keywords

Navigation