Skip to main content
Log in

Effect of CO2 Injection on the Multiphase Flow Properties of Reservoir Rock

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Geologic carbon storage (GCS) has recently been drawing attention as an effective and sustainable method to reduce CO2 emissions to the atmosphere. The injection of CO2 is mainly conducted into brine-saturated reservoir formations, and assessment of the multiphase flow properties becomes essential to evaluate the injectivity and storage capacity for carbon storage. Characterization of the CO2/water flow system requires comprehensive knowledge of host rock’s relative permeability, capillary pressure, and wettability that are related to each other. Moreover, chemical reactions between the mineral grains and acidic mixture of CO2 and water may significantly affect the flow properties. In this study, a comprehensive experimental approach to characterize the chemical effect on the multiphase flow of CO2 in water-saturated reservoir rock is presented. One silica-rich formation—Berea sandstone, and two calcite-rich formations—Apulian and Indiana limestones, are selected to represent the reservoir materials. Robust experimental techniques for measurements of the relative permeability and degree of saturation based on the changes in poroelastic response are introduced. The relative permeability curves are determined, as it is shown that the curvatures and maximum degree of CO2 saturation change after CO2 treatment, especially for the limestones. In addition, the apparent contact angle increases and surface roughness decreases due to the chemical effect of CO2 injection on limestones. Finally, the advantages and limitations of the presented measurements are discussed and reported flow properties are compared to those predicted from the pore-scale analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdallah, W., Buckley, J.S., Carnegie, A., Edwards, J., Herold, B., Fordham, E., Graue, A., Habashy, T., Seleznev, N., Signer, C., Hussain, H.: Fundamentals of wettability. Technology. 38, 1125–1144 (1986)

    Google Scholar 

  • Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (1973)

    Google Scholar 

  • Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces, vol. 15. Interscience publishers, New York (1967)

    Google Scholar 

  • Akbarabadi, M., Piri, M.: Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Adv. Water Resour. 52, 190–206 (2013)

    Article  Google Scholar 

  • Al-Anssari, S., Arif, M., Wang, S., Barifcani, A., Lebedev, M., Iglauer, S.: Wettability of nano-treated calcite/CO2/brine systems: implication for enhanced CO2 storage potential. Int. J. Greenh. Gas Control. 66, 97–105 (2017)

    Article  Google Scholar 

  • Al-Yaseri, A.Z., Lebedev, M., Barifcani, A., Iglauer, S.: Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity. J. Chem. Thermodyn. 93, 416–423 (2016)

    Article  Google Scholar 

  • Alnoush, W., Sayed, A., Solling, T.I., Alyafei, N.: Impact of calcite surface roughness in wettability assessment: interferometry and atomic force microscopy analysis. J. Pet. Sci. Eng. 203, 108679 (2021)

    Article  Google Scholar 

  • Amalokwu, K., Best, A.I., Sothcott, J., Chapman, M., Minshull, T., Li, X.Y.: Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures. Geophys. J. Int. 197(2), 943–947 (2014)

    Article  Google Scholar 

  • Amirfazli, A., Kwok, D.Y., Gaydos, J., Neumann, A.W.: Line tension measurements through drop size dependence of contact angle. J. Colloid Interface Sci. 205(1), 1–1 (1998)

    Article  Google Scholar 

  • Amott, E.: Observations relating to the wettability of porous rock. Trans. AIME. 216(01), 156–162 (1959)

    Article  Google Scholar 

  • Anderson, W.: Wettability literature survey-part 2: Wettability measurement. J. Pet. Technol. 38(11), 1246–1262 (1986)

    Article  Google Scholar 

  • Bachu, S.: Drainage and imbibition CO2/brine relative permeability curves at in situ conditions for sandstone formations in western Canada. Energy Proced. 37, 4428–4436 (2013)

    Article  Google Scholar 

  • Bachu, S., Bennion, B.: Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ. Geol. 54(8), 1707–1722 (2008)

    Article  Google Scholar 

  • Baldacchini, T., Carey, J.E., Zhou, M., Mazur, E.: Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22(11), 4917–4919 (2006)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation (1988)

  • Bennion, B., Bachu, S.: Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, carbonate, shale, and anhydrite rocks. SPE Reserv. Eval. Eng. 11, 487–496 (2008)

    Article  Google Scholar 

  • Bennion, B., Bachu, S.: Relative permeability characteristics for supercritical CO2 displacing water in a variety of potential sequestration zones. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2005)

  • Bennion, D.B., Bachu, S.: Permeability and relative permeability measurements at reservoir conditions for CO2-water systems in ultra low permeability confining caprocks. In: EUROPEC/EAGE Conference and Exhibition, p. 106995. SPE (2007)

  • Benson, S.M., Doughty, C.: Estimation of field-scale relative permeability from pressure transient tests. In Proceedings, EPA CO2SC Workshop, Lawrence Berkeley National Laboratory, Berkeley (2006)

  • Berg, S., Oedai, S., Ott, H.: Displacement and mass transfer between saturated and unsaturated CO2–brine systems in sandstone. Int. J. Greenh. Gas Control. 12, 478–492 (2013)

    Article  Google Scholar 

  • Berg, S., Unsal, E., Dijk, H.: Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Computers and Geotechnics. 132, 103964 (2021)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Hydrology Papers 3. Colorado State University, Fort Collins, CO (1964)

    Google Scholar 

  • Burdine, N.T.: Relative permeability calculations from pore size distribution data. Trans. Am. Inst. Mining Metall. Eng. 198, 71–78 (1953)

    Google Scholar 

  • Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  • Chadwick, A., Arts, R., Eiken, O., Williamson, P., Williams, G.: Geophyiscal monitoring of the CO2 plume at Sleipner, North Sea. In: Advances in the Geological Storage of Carbon Dioxide, pp. 303–314. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  • Chen, X., Kianinejad, A., DiCarlo, D.A.: An experimental study of CO2-brine relative permeability in sandstone. In: SPE-169137-MS. Society of Petroleum Engineers, Richardson, TX, US (2014)

    Google Scholar 

  • Chen, Z., Ewing, R.E., Espedal, M.: Multiphase flow simulation with various boundary conditions. Comput. Methods Water Resour. 925–932 (1994)

  • Churcher, P.L., French, P.R., Shaw, J.C., Schramm, L.L.: Rock properties of Berea sandstone, Baker dolomite, and Indiana limestone. Society of Petroleum Engineers, Anaheim (1991)

    Book  Google Scholar 

  • Civan, F., Donaldson, E.C.: Relative permeability from unsteady-state displacements with capillary pressure included. SPE Form. Eval. 4(02), 189–193 (1989)

    Article  Google Scholar 

  • Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1–17 (2013)

    Article  Google Scholar 

  • Collins, H.C.: The Mississippian and Pennsylvanian (Carboniferous) systems in the United States. United States Geological Survey, Ohio (1979)

    Google Scholar 

  • Craig, F.F.: The Reservoir Engineering Aspects of Waterflooding. Monograph Series. Society of Petroleum Engineers of AIME, Pennsylvania(1971)

    Google Scholar 

  • Crotti, M.A., Cobeñas, R.H.: Scaling up of laboratory relative permeability curves. An advantageous approach based on realistic average water saturations. In SPE Latin American and Caribbean Petroleum Engineering Conference Mar 25. 2001 (2001)

  • Deng, Y., Xu, L., Lu, H., Wang, H., Shi, Y.: Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chem. Eng. Sci. 177, 445–454 (2018)

    Article  Google Scholar 

  • Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Comprehensive Rock Engineering, vol. II, pp. 113–171. Pergamon, Oxford (1993)

    Google Scholar 

  • Donaldson, E.C., Civan, F., Alam, U.: Relative permeabilities at simulated reservoir conditions. SPE. Reserv. Eng. 3(04), 1323–1327 (1988)

    Article  Google Scholar 

  • Donaldson, E.C., Thomas, R.D., Lorenz, P.B.: Wettability determination and its effect on recovery efficiency. Soc. Pet. Eng. J. 9(01), 13–20 (1969)

    Article  Google Scholar 

  • Drelich, J., Miller, J.D., Good, R.J.: The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques. J. Colloid Interface Sci. 179(1), 37–50 (1996)

    Article  Google Scholar 

  • Dullien, F.A.L.: Porous Media Fluid Transport and Pore Structure. Acad. Press Inc, San Diego, California (1992)

    Google Scholar 

  • Elkhoury, J.E., Ameli, P., Detwiler, R.L.: Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions. Int. J. Greenh. Gas Control. 16, 203–215 (2013)

    Article  Google Scholar 

  • Elkhoury, J.E., Shankar, R., Ramakrishnan, T.S.: Resolution and limitations of X-ray micro-CT with applications to sandstones and limestones. Transp. Porous Med. 129(1), 413–425 (2019)

    Article  Google Scholar 

  • Espinoza, D.N., Santamarina, J.C.: Water-CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resour. Res. 46(7) (2010)

  • Falcon-Suarez, I.H., Papageorgiou, G., Jin, Z., Muñoz‐Ibáñez, A., Chapman, M., Best, A.I. (2020) CO2‐brine substitution effects on ultrasonic wave propagation through sandstone with oblique fractures. Geophys. Res. Lett. 47(16),  e2020GL088439

    Article  Google Scholar 

  • Falode, O., Manuel, E.: Wettability effects on capillary pressure, relative permeability, and irredcucible saturation using porous plate. J. Pet. Eng. (2014)

  • Farokhpoor, R., Bjørkvik, B.J., Lindeberg, E., Torsæter, O.: CO2 wettability behavior during CO2 sequestration in saline aquifer-an experimental study on minerals representing sandstone and carbonate. Energy Proced. 37, 5339–5351 (2013)

    Article  Google Scholar 

  • Fulcher, R.A., Ertekin, T., Stahl, C.D.: Effect of capillary number and its constituents on two phase relative permeability curves. J. Pet. Technol. 37, 249–260 (1985)

    Article  Google Scholar 

  • van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Good, R.J.: Contact angles and the surface free energy of solids. In: Surface and Colloid Science. Springer, Boston, MA (1979)

    Chapter  Google Scholar 

  • Grombacher, D., Vanorio, T., Ebert, Y.: Time-lapse acoustic, transport, and NMR measurements to characterize microstructural changes of carbonate rocks during injection of CO2-rich water. Geophysics 77(3), WA169–WA179 (2012)

    Article  Google Scholar 

  • Haeri, F., Tapriyal, D., Sanguinito, S., Shi, F., Fuchs, S.J., Dalton, L.E., Baltrus, J., Howard, B., Crandall, D., Matranga, C., Goodman, A.: CO2–Brine contact angle measurements on Navajo, Nugget, Bentheimer, Bandera Brown, Berea, and Mt. Simon sandstones. Energy Fuels 34(5), 6085–6100 (2020)

    Article  Google Scholar 

  • IPCC.: Climate Change 2021: The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (2021)

  • IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press (2005)

  • Ionescu, E., Maini, B.B.: A Review of Laboratory Techniques for Measuring Wettability of Petroleum Reservoir Rocks. US Department of Energy, Technical Report. (1983)

  • Janczuk, B., Zdziennicka, A.: A study on the components of surface free energy of quartz from contact angle measurements. J. Mater. Sci. 29(13), 3559–3564 (1994)

    Article  Google Scholar 

  • Johnson, R.E.: Wettability contact angles. Surf. Colloid Sci. 2, 85–153 (1969)

    Google Scholar 

  • Johnson, J.W., Nitao, J.J., Morris, J.P.: Reactive transport modeling of caprock integrity during natural and engineered CO2 storage. In: Carbon Dioxide Capture for Storage in Deep Geologic Formations, pp. 787–813. Elsevier, Oxford, UK (2005)

    Chapter  Google Scholar 

  • Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418 (2006)

    Article  Google Scholar 

  • Kamali, F., Hussain, F.: Field-scale simulation of CO2 enhanced oil recovery and storage through SWAG injection using laboratory estimated relative permeabilities. J. Pet. Sci. Eng. 156, 396–407 (2017)

    Article  Google Scholar 

  • Kaveh, N.S., Rudolph, E.S.J., Van Hemert, P., Rossen, W.R., Wolf, K.H.: Wettability evaluation of a CO2/water/bentheimer sandstone system: contact angle, dissolution, and bubble size. Energy Fuels 28(6), 4002–4020 (2014)

    Article  Google Scholar 

  • Kim, K., Makhnenko, R.Y.: Coupling between poromechanical behavior and fluid flow in tight rock. Transp. Porous Med. 135(2), 487–512 (2020)

    Article  Google Scholar 

  • Kim, K., Makhnenko, R.Y.: Changes in rock matrix compressibility during deep CO2 storage. Greenh. Gases Sci. Technol. 11(5), 954–973 (2021)

    Article  Google Scholar 

  • Kim, K., Makhnenko, R.Y.: Short- and long-term response of reservoir rock induced by CO2 injection. Rock. Mech. Rock. Eng. 55 (11), 6605–6625 (2022). https://doi.org/10.1007/s00603-022-03032-1

    Article  Google Scholar 

  • Kim, K., Vilarrasa, V., Makhnenko, R.Y.: CO2 injection effect on geomechanical and flow properties of calcite-rich reservoirs. Fluids. 3(3), 66 (2018)

    Article  Google Scholar 

  • Kopp, A., Class, H., Helmig, R.: Investigations of CO2 storage capacity in deep saline aquifers. Part 1: dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control 3(3), 263–276 (2009)

    Article  Google Scholar 

  • Kowalczuk, P.B., Akkaya, C., Ergun, M., Janicki, M., Sahbaz, O., Drzymala, J.: Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica. Physicochem. Prob. Min. Process. 53, 192–201 (2017)

    Google Scholar 

  • Kowalczyk, D., Slomkowski, S., Chehimi, M.M., Delamar, M.: Adsorption of aminopropyltriethoxy silane on quartz: an XPS and contact angle measurements study. Int. J. Adhes. Adhes. 16(4), 227–232 (1996)

    Article  Google Scholar 

  • Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B.: Capillary trapping for geologic carbon dioxide storage–from pore scale physics to field scale implications. Int. J. Greenh. Gas Control. 40, 221–237 (2015)

    Article  Google Scholar 

  • Krevor, S.C., Pini, R., Zuo, L., Benson, S.M.: Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48(2) (2012)

  • Lamb, R.N., Furlong, D.N.: Controlled wettability of quartz surfaces. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 78(1), 61–73 (1982)

    Article  Google Scholar 

  • Lowe, J., Johnson, T.C.: Use of back pressure to increase degree of saturation of triaxial test specimens. In: Proceedings of the Research Conference on Shear Strength of Cohesive Soils, pp. 819–836. ASCE, Boulder (1960)

  • Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 265, 148–159 (2009)

    Article  Google Scholar 

  • Lv, P., Liu, Y., Wang, Z., Liu, S., Jiang, L., Chen, J., Song, Y.: In situ local contact angle measurement in a CO2–brine–sand system using microfocused X-ray CT. Langmuir 33(14), 3358–3366 (2017)

    Article  Google Scholar 

  • Makhnenko, R.Y., Labuz, J.F.: Elastic and inelastic deformation of fluid-saturated rock. Phiosl. Trans. R Soc. A 374, 20150422 (2016)

    Article  Google Scholar 

  • Mangane, P.O., Gouze, P., Luquot, L.: Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution and particles migration during CO2‐rich injection. Geophys. Res. Lett. 40(17), 4614–4619 (2013)

  • Marsden, S.S.: Wettability-its measurement and application to waterflooding. J. Jpn. Assoc. Pet. Tech. 30(1), 1–10 (1965)

    Article  Google Scholar 

  • Martinez, M.J., Newell, P., Bishop, J.E., Turner, D.Z.: Coupled multiphase flow and geomechanics model for analysis of joint reactivation during CO2 sequestration operations. Int. J. Greenh. Gas Control 17, 148–160 (2013)

    Article  Google Scholar 

  • Mazumder, S., Wolf, K.H.: Differential swelling and permeability change of coal in response to CO2 injection for ECBM. In SPE Asia Pacific Oil and Gas Conference and Exhibition. OnePetro (2008)

  • McCaffery, F.G., Mungan, N.: Contact angle and interfacial tension studies of some hydrocarbon-water-solid systems. J. Can. Pet. Technol. 9(03) (1970)

  • Morrow, N.R.: Wettability and its effect on oil recovery. J. Pet. Technol. 42(12), 1476–1484 (1990)

    Article  Google Scholar 

  • Morrow, N.R.: The effects of surface roughness on contact: angle with special reference to petroleum recovery. J. Can. Pet. Technol. 14(04) (1975)

  • Mualem, Y.: New model for predicting hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Müller, N.: Supercritical CO2-brine relative permeability experiments in reservoir rocks—literature review and recommendations. Transp. Porous Med. 87(2), 367–383 (2011)

    Article  Google Scholar 

  • Neumann, A.W., Good, R.J.: Techniques of measuring contact angles. In: Surface and Colloid Science, pp. 31–91. Springer, Boston, MA (1979)

    Chapter  Google Scholar 

  • Newberry, J.S.: Report of the Geological Survey of Ohio. Nevins Myers 2, 1 (1874)

    Google Scholar 

  • Niu, B., Krevor, S.: The impact of Mineral dissolution on drainage relative permeability and residual trapping in two Carbonate Rocks. Transp. Porous Med. 131(2), 363–380 (2020)

    Article  Google Scholar 

  • Okayama, T., Keller, D.S., Luner, P.: The wetting of calcite surfaces. J. Adhes. 63(1–3), 231–52 (1997)

    Article  Google Scholar 

  • Oostrom, M., White, M.D., Porse, S.L., Krevor, S.C., Mathias, S.A.: Comparison of relative permeability–saturation–capillary pressure models for simulation of reservoir CO2 injection. Int. J. Greenh. Gas Control 45, 70–85 (2016)

    Article  Google Scholar 

  • Orr, F.M. Jr.: Storage of carbon dioxide in geologic formations. J. Pet. Technol. 56(9), 90–97 (2004)

    Article  Google Scholar 

  • Patton, J.B., Carr, D.D.: The Salem Limestone in the Indiana Building-Stone District. Indiana Geological Survey, Kolkata (1982)

    Google Scholar 

  • Perrin, J.C., Krause, M., Kuo, C.W., Miljkovic, L., Charoba, E., Benson, S.M.: Core-scale experimental study of relative permeability properties of CO2 and brine in reservoir rocks. Energy Proced. 1(1), 3515–3522 (2009)

    Article  Google Scholar 

  • Pini, R., Krevor, S.C., Benson, S.M.: Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Adv. Water Resour. 38, 48–59 (2012)

    Article  Google Scholar 

  • Pini, R., Krevor, S.: Laboratory studies to understand the controls on flow and transport for CO2 storage. In: Science of Carbon Storage in Deep Saline Formations, pp. 145–180. Elsevier (2019)

  • Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42, 282–295 (2002)

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.: TOUGH2 User’s Guide, Version 2.0. Report LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley, CA, USA (1999)

    Google Scholar 

  • Rayward-Smith, W.J., Woods, A.W.: Some implications of cold CO2 injection into deep saline aquifers. Geophys. Res. Lett. 38(6) (2011)

  • Rohmer, J., Pluymakers, A., Renard, F.: Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: Weak acid, weak effects? Earth Sci. Rev. 157, 86–110 (2016)

    Article  Google Scholar 

  • Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 30(3), 525–551 (2012)

    Article  Google Scholar 

  • Saad, N., Cullick, A.S., Honarpour, M.M.: Effective relative permeability in scale-up and simulation. In: Low Permeability Reservoirs Symposium. OnePetro (1995)

  • Sarmadivaleh, M., Al-Yaseri, A.Z., Iglauer, S.: Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2–water interfacial tension. J. Colloid Interface Sci. 441, 59–64 (2015)

    Article  Google Scholar 

  • Scanziani, A., Singh, K., Blunt, M.J., Guadagnini, A.: Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media. J. Colloid Interface Sci. 496, 51–59 (2017)

    Article  Google Scholar 

  • Sedaghatinasab, R., Kord, S., Moghadasi, J., Soleymanzadeh, A.: Relative permeability hysteresis and capillary trapping during CO2 EOR and sequestration. Int. J. Greenh. Gas Control. 106, 103262 (2021)

    Article  Google Scholar 

  • Shaffer, N.R.: Indiana limestone: America’s building stone. Geol. Soc. Lond. Special Publ. 486(1), 77–101 (2020)

    Article  Google Scholar 

  • Shi, Z., Sun, L., Haljasmaa, I., Harbert, W., Sanguinito, S., Tkach, M., Goodman, A., Tsotsis, T.T., Jessen, K.: Impact of Brine/CO2 exposure on the transport and mechanical properties of the Mt Simon sandstone. J. Pet. Sci. Eng.  177, 295–305 (2019)

    Article  Google Scholar 

  • Shi, J.Q., Xue, Z., Durucan, S.: Seismic monitoring and modelling of supercritical CO2 injection into a water-saturated sandstone: interpretation of P-wave velocity data. Int. J. Greenh. Gas Control. 1(4), 473–480 (2007)

    Article  Google Scholar 

  • Skempton, A.W.: The pore-pressure coefficients A and B. Geotechnique 4(4), 143–147 (1954)

    Article  Google Scholar 

  • Su, E., Liang, Y., Zou, Q., Niu, F., Li, L.: Analysis of effects of CO2 injection on coalbed permeability: implications for coal seam CO2 sequestration. Energy Fuels 33(7), 6606–6615 (2019)

    Article  Google Scholar 

  • Szymczak, P., Ladd, A.J.: Wormhole formation in dissolving fractures. J. Geophys. Res. Solid Earth. 114(B6) (2009)

  • Tamai, Y., Aratani, K.: Experimental study of the relation between contact angle and surface roughness. J. Phys. Chem. 76(22), 3267–3271 (1972)

    Article  Google Scholar 

  • Tarokh, A., Makhnenko, R.Y.: Remarks on the solid and bulk responses of fluid-filled porous rock. Geophysics. 84(4), WA83–WA95 (2019)

    Article  Google Scholar 

  • Tarokh, A., Makhnenko, R.Y., Kim, K., Zhu, X., Popovics, J.S., Segvic, B., Sweet, D.E.: Influence of CO2 injection on the poromechanical response of Berea sandstone. Int. J. Greenh. Gas Control. 95, 102959 (2020)

    Article  Google Scholar 

  • Tudek, J., Crandall, D., Fuchs, S., Werth, C.J., Valocchi, A.J., Chen, Y., Goodman, A.: In situ contact angle measurements of liquid CO2, brine, and Mount Simon sandstone core using micro X-ray CT imaging, sessile drop, and Lattice Boltzmann modeling. J. Pet. Sci. Eng. 155, 3–10 (2017)

    Article  Google Scholar 

  • U. S. Department of Energy: Carbon Sequestration Atlas of the United States and Canada, 3rd edn. US DOE, Washington, D.C. (2010)

    Google Scholar 

  • Vilarrasa, V., Silva, O., Carrera, J., Olivella, S.: Liquid CO2 injection for geological storage in deep saline aquifers. Int. J. Greenh. Gas Cont. 14, 84–96 (2013)

  • Vilarrasa, V., Makhnenko, R.Y., Rutqvist, J.: Field and laboratory studies of geomechanical response to the injection of CO2. In: Science of Carbon Storage in Deep Saline Formations. pp. 209–236. Elsevier, Oxford (2019)

  • Wang, S., Edwards, I.M., Clarens, A.F.: Wettability phenomena at the CO2–brine–mineral interface: implications for geologic carbon sequestration. Environ. Sci. Technol. 47(1), 234–241 (2013)

    Article  Google Scholar 

  • Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Article  Google Scholar 

  • Wenzel, R.N.: Surface roughness and contact angle. J. Phys. Chem. 53(9), 1466–1467 (1949)

  • Winkler, K.W., Plona, T.J.: Technique for measuring ultrasonic velocity and attenuation spectra in rocks under pressure. J. Geophys. Res. Solid Earth 87(B13), 10776–10780 (1982)

    Article  Google Scholar 

  • Wood, A.B.: A Textbook of Sound. G. Bell and Sons, London (1930)

    Google Scholar 

  • Xu, T., Pruess, K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1 methodology. Am. J. Sci. 301, 16–33 (2001)

    Article  Google Scholar 

  • Xu, T., Sonnenthal, E.L., Spycher, N., Pruess, K.: TOURGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput. Geosci. 32, 145–165 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The experimental data are available upon request. K. Kim’s research was supported by Technip FMC Educational Fund Fellowship. P. Kundzicz is thankful for the REU scholarship provided by the CEE department at UIUC. R.Y. Makhnenko acknowledges the support from US DOE through Carbon SAFE Illinois Corridor Project DE-FE0031892. Xiao Yan has assisted with the contact angle measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiseok Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Kundzicz, P.M. & Makhnenko, R.Y. Effect of CO2 Injection on the Multiphase Flow Properties of Reservoir Rock. Transp Porous Med 147, 429–461 (2023). https://doi.org/10.1007/s11242-023-01916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-023-01916-6

Keywords

Navigation