Skip to main content

Advertisement

Log in

Chemical stabilization of metals in the environment: a feasible alternative for remediation of mine soils

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Initial risk assessment characterization carried out in a tailing pond, called “El Lirio”, came from metal mining showed that these soils have low fertility; low amounts of nitrogen, organic carbon, phosphorous, and carbonates; and high concentrations of total metals (10,719 mg Zn kg−1, 2,821 mg Pb kg−1, and 30 mg Cd kg−1), diethylenetriaminepentaacetic acid (DTPA)-extractable metals, and water-soluble metals, which suggest an urgent need for remediation. Different amendments have been selected, including three anthropogenic wastes: pig manure, sewage sludge, and lime; all were added to the constructed plots in the mine pond. The objectives were to: (1) reduce acid mine drainage, metal mobilization, and toxicity and (2) provide nutrients which enable plant establishment. Results showed an increase in pH, electrical conductivity, total nitrogen, organic carbon, and equivalent calcium carbonate contents. Although water- and DTPA-extractable Zn, Pb, and Cd were reduced, there was an increment in DTPA- and water-extractable Cu due to the addition of organic matter. The amendments also enhanced the establishment of plants. This study constitutes the first stage of a successful remediation programme that can be applied in similar mining areas. The chemical stabilization of metals is a cost-effective alternative for remediation of mine areas in SE Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almas A, Singh BR, Salbu B (1999) Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. J Environ Qual 28:1742–1750

    Article  Google Scholar 

  • Álvarez-Ayuso E, García-Sánchez A (2003) Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environ Pollut 125:337–344

    Article  Google Scholar 

  • Ayala FJ, Rodríguez JM (1986) Manual para el diseño y construcción de escombreras y presas de residuos mineros. IGME, Madrid

    Google Scholar 

  • Bernal M, Roig A, Madrid R, Navarro A (1992) Salinity risks on calcareous soils following pig slurry applications. Soil Use Manag 8(3):125–130

    Article  Google Scholar 

  • Bosch A, Poch R, Salazar M (2000) Evaluación de la utilización de estériles de una explotación minera carbonífera junto con purín porcino para la revegetación de la propia escombrera. Edafología 7–3:137–142

    Google Scholar 

  • Bower C, Wilcox L (1965) Soluble salts. In: Black CA (ed) Methods of soil analysis. Soil Science Society of America, pp 933–951

  • Chantigny M, Rochette P, Angers D (2001) Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment. Can J Soil Sci 81:131–137

    Article  Google Scholar 

  • Chiu K, Ye Z, Wong M (2006) Growth of Vetiveria zizanioides and Phragmites australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

    Article  Google Scholar 

  • Conesa H, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Sci Total Environ 366:1–11

    Article  Google Scholar 

  • Conesa HM, Robinson B, Schulin R, Nowack B (2007a) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707

    Article  Google Scholar 

  • Conesa H, Faz A, Arnaldos R (2007b) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Unión mining district (SE Spain). Chemosphere 66:38–44

    Article  Google Scholar 

  • Conesa HM, Schulin R, Nowack B (2007c) A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings. Water Air Soil Pollut 183(1–4):201–212

    Article  Google Scholar 

  • Council Directive 91/676/EEC (1991) Protection of waters against pollution caused by nitrates from agricultural sources. Off J L 375:1–8

    Google Scholar 

  • Duchaufour P (1970) Précis de Pedologie. In: Masson, Cie (eds), París

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem der Erde 65:29–42

    Article  Google Scholar 

  • FAO–ISRIC–ISSS (1990) Food and Agriculture Organization–International Soil Reference and Information Centre. Guidelines for soil description, 3rd edn (Revised). Food and Agriculture Organization of the United Nations, Roma

  • Faz A, Carmona DM, Zanuzzi A, Mermut AR (2008) Pig manure application for remediation of mine soils in Murcia Province, SE Spain. Sci World J 8:819–827

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Inc., Boca Raton

  • Lindsay W, Norvell W (1978) Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Sci Soc Am J 42:421–428

    Article  Google Scholar 

  • Lozano M, Fernández M, Álvarez E (1999) Heavy metals in mine soils amended with sewage sludge. Land Degrad Dev 10:555–564

    Article  Google Scholar 

  • Martinez CE, McBride MB (1999) Dissolved and labile concentrations of Cd, Cu, Pb and Zn in aged ferrihydrite–organic matter systems. Environ Sci Technol 32:743–748

    Article  Google Scholar 

  • Martínez-Pagán P (2006) Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la Región de Murcia. Tesis Doctoral, Universidad Politécnica de Cartagena

  • Martínez-Sánchez MJ, Pérez-Sirvent C (2007) Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. CARM

  • Ministry of Housing (1999) Spatial planning and the environment. Intervention and target values-soil quality standards. Report HSE 94.021. The Netherlands

  • National Soil Survey Center (2004) Soil survey laboratory methods manual. Soil Survey Investigations Report, N° 42, version 4.0. In: Burt R (ed) United States Department of Agriculture. Natural resources Conservation Service, Washington

  • Norvell WA (1984) Comparison of chelating agents as extractants for metals in diverse soil material. Soil Sci Soc Am J 48:1285–1292

    Article  Google Scholar 

  • Oen IS, Fernández JC, Manteca JI (1975) The lead–zinc and associated ores of La Unión, Sierra de Cartagena, Spain. Econ Geol 70:1259–1278

    Article  Google Scholar 

  • Peech M (1965) Hydrogen-ion activity. In: Black CA (ed) Methods for soil analysis. American Society of Agronomy, Madison, pp 914–916

  • Pitchel J, Salt C (1998) Vegetative growth and trace metal accumulation on metalliferous wastes. J Environ Qual 27:618–642

    Google Scholar 

  • Quintas Y (1997) Caracterización y posibilidades de recuperación de antrosoles de canteras y minas de Galicia. Tesis Doctoral. Departamento de Edafología y Química Agrícola. Universidad de Santiago, España

  • Rate A, Lee K, French P (2004) Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants. Bioresour Technol 91:223–231

    Article  Google Scholar 

  • Rauret G (1998) Extraction procedures for the determination of heavy metals in contaminated soils and sediment. Talanta 46:449–455

    Article  Google Scholar 

  • Real Decreto 261/1996 (1996) Protección de las aguas contra la contaminación producida por los nitratos procedentes de fuentes agrarias. BOE 61/1996, pp 9734–9737

  • Risser JA, Baker DE (1990) Testing soils for toxic metals. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Special Publication 3, Madison, pp 275–298

  • Shuman LM (1998) Effect of organic waste amendments on cadmium and lead in soil fractions of two soils. Commun Soil Sci Plant 29:2939–2952

    Article  Google Scholar 

  • Sobek A, Schuller W, Freeman J, Smith R (1978) Field and laboratory methods applicable to overburdens and mine soils. Environmental Protection Technology Series. EPA-600/2-78-054, pp 68–72

  • Soil Survey Division Staff (1993) Soil Survey Manual. Soil Conservation Service. US Department of Agriculture Handbook 18. http://soils.usda.gov/technical/manual/

  • Statistix 8.0 (2003) Analytical Software for Windows. Tallahassee

  • Temminghoff E, Zee S, Haan F (1997) Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ Sci Technol 31:1109–1115

    Article  Google Scholar 

  • Tordoff G, Baker A, Willis A (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  Google Scholar 

  • USDA (2005) Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Handbook, Title 430-VI. http://soils.usda.gov/technical/handbook/

  • Van der Sloot H, Comans R, Hjelmar O (1996) Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils. Sci Total Environ 178:111–126

    Article  Google Scholar 

  • Vangronsveld J, Cunningham S (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham S (eds) In situ Inactivation and phytorestoration of metal contaminated soils. Springer/R.G. Landes Company, Berlin/Georgetown, pp 1–15

  • Walker D, Clemente R, Roig A, Bernal P (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312

    Article  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of ascorbic acid method for determining phosphorous in water and NaHCO3 extracts from soil. In: Soil Science Society of America Proceedings, pp 677–678

  • Wong M (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  Google Scholar 

  • Ye ZH, Wong JWC, Wong MH, Lan CY, Baker AJM (1999) Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: a greenhouse study. Bioresour Technol 69:35–43

    Article  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma L (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  Google Scholar 

  • Zanuzzi A, Faz A (2005) Environmental impact of mining activities in two soils from SE Spain—remediation actions. In: Proceedings of the international conference on industrial crops and rural development, September 2005, Murcia, Spain, pp 313–317

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the Ministry of Educación y Ciencia (Project PTR1995-0973-OP-02-01, Project CIT-310200-2005-60, and Project CIT-310200-2005-90). JA Acosta is financed by the Fundación Séneca program of Comunidad Autónoma Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Acosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanuzzi, A., Faz, A. & Acosta, J.A. Chemical stabilization of metals in the environment: a feasible alternative for remediation of mine soils. Environ Earth Sci 70, 2623–2632 (2013). https://doi.org/10.1007/s12665-013-2313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2313-3

Keywords

Navigation