Skip to main content
Log in

Determination of geochemical background for environmental studies of soils via the use of HNO3 extraction and Q–Q plots

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The procedure proposed in this study is based on the extraction of elements in soils by analytical grade HNO3, the distribution of the elemental data displayed on probability graphs (Q–Q plots) and the visualization of the results spatially by GIS software. The applicability of the procedure is demonstrated in an urban area and its surroundings (Kavala, northern Greece). A major (Ca) and a trace (Ag) element are used as examples in order to demonstrate the applicability of the proposed procedure. Normal probability and lognormal probability plots of Ca and Ag show that their concentrations are lognormally distributed and that their geochemical baseline and anomaly threshold values can be calculated with the aid of their geometric mean and geometric deviation. The advantages of the proposed procedure are simplicity, comprehensiveness, and low cost. It can be applied to environmental geochemical studies of soils in a variety of areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahrens LH (1954a) The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim Cosmochim Acta 5:49–73

    Article  Google Scholar 

  • Ahrens LH (1954b) The lognormal distribution of the elements (2). Geochim Cosmochim Acta 6:121–131

    Article  Google Scholar 

  • Ahrens LH (1957) Lognormal-type distributions—III. Geochim Cosmochim Acta 11:205–212

    Article  Google Scholar 

  • Björklund A (1983) Effects of exponentially decaying spatial patterns on the probability distribution of anomalous values. J Geochem Explor 19:349–359

    Article  Google Scholar 

  • Bluman AG (2003) Elementary statistics, a step by step approach, 2nd edn. McGraw-Hill, New York, p 637

    Google Scholar 

  • Bölviken B, Bogen J, Demetriades A, De Vos W, Ebbing J, Hindel R, Langedal M, Locutura J, O’Connor P, Ottesen RT, Pulkkinen E, Salminen R, Schermann O, Swennen R, Van der Sluys J, Volden T (1996) Regional geochemical mapping of Western Europe towards the year 2000. J Geochem Explor 56:141–166

    Article  Google Scholar 

  • Bowman WS, Faye GH, Sutarno R, McKeague JA, Kodama H (1979) Soil samples SO-1, SO-2, SO-3 and SO-4. Certified reference materials CANMET, Report 79-3, p 32

  • CANMET (Canada Centre for Mineral and Energy Technology) (2003) SO-2 to SO-4, soil samples. http://www.nrcan.gc.ca/mms/canmetmtb/mmsllmsm/ccrmp/certificates/so-2.htm. Accessed April 2003

  • CANMET (Canada Centre for Mineral and Energy Technology) (2003) http://www.rri.kyoto-u.ac.jp/ja/NAA/CANSO2.HTM. Accessed April 2003

  • Chen M, Ma QL (1998) Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. J Environ Qual 26:1294–1300

    Article  Google Scholar 

  • Chen M, Ma QL (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65:491–499

    Article  Google Scholar 

  • Christofides G, Soldatos T, Eleftheriadis G, Koroneos A (1998) Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanol 10:305–318

    Google Scholar 

  • Christofides G, Koroneos A, Soldatos T, Eleftheriadis G, Kilias A (2001) Eocene magmatism (Sithonia and Elatia plutons) in the internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope Massif (Northern Greece). Acta Vulcanol 13:73–89

    Google Scholar 

  • Davis CJ (1973) Statistics and data analysis in geology. Wiley, New York, p 550

    Google Scholar 

  • De Vos W, Viaene W (1980) Geochemical study of soils and Metallogenetic implications at Hiendelaencina, Guadalajara, Spain. Miner Deposita 15:87–99

    Article  Google Scholar 

  • Demetriades A (2008) Overbank Sediment sampling in Greece: a contribution to the evaluation of methods for the ‘Global Geochemical Baselines’ mapping project. Geochem Explor Environ Anal 8:229–239

    Article  Google Scholar 

  • FAO (Food and Agriculture Organisation of the United Nations) (1974) Legend of the soil map of the world, internet link: key to the FAO soil units in the FAO/Unesco soil map of the world. http://www.fao.org/ag/agl/agll/key2-soil.stm. Accessed April 2003

  • FAO (Food and Agriculture Organisation of the United Nations) (2003) The digital soil map of the world notes. Version 3.6, p 21

  • Fernandez-Turiel JL, Duran-Barrachina ME (1989) A contribution to regional tin exploration in the Iberian Massif. J Geochem Explor 31:295–305

    Article  Google Scholar 

  • Fernandez-Turiel JL, Llorens JF, López-Vera F, Gómez-Artola C, Morell I, Gimeno D (2000) Strategy for water analysis using ICP-MS. Fresenius J Anal Chem 368:601–606

    Article  Google Scholar 

  • Fernandez-Turiel JL, Aceñolaza P, Medina ME, Llorens JF, Sardi F (2001) Assessment of a smelter impact area using surface soils and plants. Environ Geochem Health 23:65–78

    Article  Google Scholar 

  • Filippidis A, Georgakopoulos A, Kassoli-Fournaraki A, Misaelides P, Yiakkoupis P, Broussoulis J (1996) Trace element contents in composite samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. Int J Coal Geol 29:219–234

    Article  Google Scholar 

  • Frattini P, De Vivo B, Lima A, Cicchella D (2006) Elemental and gamma-ray surveys in the volcanic soils of Ischia Island, Italy. Geochem Explor Environ Anal 6:325–339

    Article  Google Scholar 

  • Gallego JLR, Ordóñez A, Loredo J (2002) Investigation of trace element sources from an industrialised area (Avilés, Northern Spain) using multivariate statistical methods. Environ Int 27:589–596

    Article  Google Scholar 

  • Ganas A, Aerts J, Astaras T, De Vente J, Frogoudakis E, Lambrinos N, Riskakis C, Oikonomidis D, Filippidis A, Kassoli-Fournaraki A (2004) The use of earth observation and decision support systems in the restoration of open-cast nickel mines in Evia, Central Greece. Int J Remote Sens 25:3261–3274

    Article  Google Scholar 

  • Garrett RG (1989) The chi-square plot: a tool for multivariate outlier recognition. J Geochem Explor 32:319–341

    Article  Google Scholar 

  • Garrett RG, Reimann C, Smith DB, Xie X (2008) From geochemical prospecting to international geochemical mapping: a historical overview. Geochem Explor Environ Anal 8:205–217

    Article  Google Scholar 

  • Grunsky EC (2010) The interpretation of geochemical survey data. Geochem Explor Environ Anal 10:27–74

    Article  Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper & Row, NY, p 415

    Google Scholar 

  • HNMS (Hellenic National Meteorological Service) (1978) Climatic data of the Greek network, period 1930–1975 (in Greek), p 100

  • Horckmans L, Swennen R, Deckers J, Maquil R (2005) Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg. Catena 59:279–304

    Article  Google Scholar 

  • Johnson CC, Ander EL (2008) Urban geochemical mapping: how and why we do them. Environ Geochem Health 30:511–530

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL, p 413

    Google Scholar 

  • Kelepertsis A, Argyraki A, Alexakis D (2006) Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochem Explor Environ Anal 6:349–355

    Article  Google Scholar 

  • Kilias AA, Mountrakis DM (1998) Tertiary extension of the Rhodope massif associated with granite emplacement (Northern Greece). Acta Vulcanol 10:331–337

    Google Scholar 

  • Kilias AA, Falalakis G, Mountrakis DM (1999) Cretaceous—tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). Int J Earth Sci 88:513–531

    Article  Google Scholar 

  • Lepeltier C (1969) A simplified statistical treatment of geochemical data by graphical representation. Econ Geol 64:538–550

    Article  Google Scholar 

  • Lucho-Constantino CA, Alvarez-Suárez M, Beltrán-Hernández RI, Prieto-García F, Poggi-Varaldo HM (2005) A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environ Int 31:313–323

    Article  Google Scholar 

  • Mann AW (2010) Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochem Explor Environ Anal 10:17–26

    Article  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39:990–1000

    Article  Google Scholar 

  • Miesch AT (1967) Methods of computation for estimating geochemical abundance, U.S. Geological Survey Professional Paper 574-B, p 15

  • NIST (National Institute of Standards and Technology) (1990) Certificate of analysis, standard reference material 2704, Buffalo River Sediment, p 3

  • NIST (National Institute of Standards and Technology) (2003) http://www.rri.ky-oto-u.ac.jp/ja/NAA/NIS2704.HTM. Accessed April 2003

  • Papastergios G, Fernández-Turiel JL, Georgakopoulos A, Gimeno D (2009) Natural and anthropogenic effects on the sediment geochemistry of Nestos River, northern Greece. Environ Geol 58:1361–1370

    Article  Google Scholar 

  • Papastergios G, Fernandez-Turiel JL, Georgakopoulos A, Gimeno D (2010a) Arsenic background concentrations in surface soils of Kavala area, northern Greece. Water Air Soil Pollut 209:323–331

    Article  Google Scholar 

  • Papastergios G, Filippidis A, Fernandez-Turiel JL, Gimeno D, Sikalidis C (2010b) Surface soil geochemistry for environmental assessment in Kavala area, northern Greece. Water Air Soil Pollut. doi:10.1007/s11270-010-0522-x

  • Parslow GR (1974) Determination of background and threshold in exploration geochemistry. J Geochem Explor 3:319–336

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece, the anatomy of an orogen. Gebrüder Borntraeger, Berlin, p 573

    Google Scholar 

  • Petalas C, Pliakas F, Diamantis I, Kallioras A (2004) Study of the distribution of precipitation in District of Eastern Macedonia and Thrace for the Period 1964–1998 (in Greek). Bull Geol Soc Greece 36:1054–1063

    Google Scholar 

  • Pickering WF (1986) Metal ion speciation-soils and sediments (a review). Ore Geol Rev 1:83–146 (Elsevier, Amsterdam)

    Google Scholar 

  • Ramsey MH (1997) Sampling and sampling preparation. In: Gill R (ed) Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists. Pearson Education Limited, England, p 329

    Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39:1001–1014

    Article  Google Scholar 

  • Reimann C, Garret RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, Chichester, UK, p 362

    Book  Google Scholar 

  • Salminen R (ed) (2009) Geochemical Atlas of Europe. http://www.gtk.fi/pu-bl/foregsatlas/. Accessed April 2009

  • Sastre J, Sahuquillo A, Vidal M, Rauret G (2002) Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta 462:59–72

    Article  Google Scholar 

  • Sierra M, Martínez FJ, Aguilar J (2007) Baselines for trace elements and evaluation of environmental risk in soils of Almería (SE Spain). Geoderma 139:209–219

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Sinclair AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J Geochem Explor 41:1–22

    Article  Google Scholar 

  • Stanley CR, Sinclair AJ (1987) Anomaly recognition for multielement geochemical data—a background characterization approach. J Geochem Explor 29:333–353

    Article  Google Scholar 

  • Thompson M, Ellison SLR, Fajgelj A, Willetts P, Wood R (1996) Harmonised guidelines for the use of recovery information in analytical measurement, symposium on harmonisation of quality assurance systems for analytical laboratories, Orlando, USA, 4–5 September 1996. http://www.eura-chem.ul.pt/guides/recovery.pdf. Accessed April 2003

  • Vavelidis M, Christofides G, Melfos V (1996) The Au–Ag bearing mineralization and placer gold of Palea Kavala (Macedonia, N. Greece), Terranes of Serbia. In: Knežević V, Krstić B (eds) The formation of the geologic framework of Serbia and the adjacent regions. Faculty of Mining and Geology, Brezovica, Belgrade, pp 311–316

    Google Scholar 

  • Vavelidis M, Melfos V, Eleftheriadis G (1997) Mineralogy and microthermometric investigations in the Au-bearing sulphide mineralization of Palea Kavala (Macedonia, Greece). In: Papunen H (ed) Mineral deposits: research and exploration, where do they meet?. Balkema, Rotterdam, pp 343–346

    Google Scholar 

  • Vistelius AB (1960) The skew frequency distribution and the fundamental law of geochemical processes. J Geol 68:1–22

    Article  Google Scholar 

  • Walsh JN, Gill R, Thirwall MF (1997) Dissolution procedures for geochemical and environmental samples. In: Gill R (ed) Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists. Pearson Education Limited, England, p 329

    Google Scholar 

  • Wu Y, Hou X, Cheng X, Yao S, Xia W, Wang S (2007) Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: a case study in Dongjiu lake, Taihu lake catchment, China. Environ Geol 52:1467–1474

    Article  Google Scholar 

  • Zhang C, Manheim FT, Hinde J, Grossman JN (2005) Statistical characterization of a large geochemical database and effect of sample size. Appl Geochem 20:1857–1874

    Article  Google Scholar 

  • Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2007) Defining the geochemical baseline: a case of Hong Kong soils. Environ Geol 52:843–851

    Article  Google Scholar 

  • Zhang C, Fay D, McGrath D, Grennan E, Carton OT (2008) Statistical analyses of geochemical variables in soils of Ireland. Geoderma 146:378–390

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the technical assistance provided by the personnel of the Faculty of Geology of the University of Barcelona, the SCT-UB and ICTJA-CSIC, Barcelona (Spain). Georgios Papastergios acknowledges the support of the Greek State Scholarships Foundation (IKY). This work was partially carried out in the framework of PEGEFA 2005SGR-00795 Research Consolidated Group, funded by AGAUR-DURSI, Generalitat de Catalunya. The authors wish to thank an anonymous reviewer for his helpful comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Papastergios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papastergios, G., Fernandez-Turiel, JL., Filippidis, A. et al. Determination of geochemical background for environmental studies of soils via the use of HNO3 extraction and Q–Q plots. Environ Earth Sci 64, 743–751 (2011). https://doi.org/10.1007/s12665-010-0894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0894-7

Keywords

Navigation