Skip to main content
Log in

Rice Husk-Derived Mesoporous Silica as a Promising Platform for Chemotherapeutic Drug Delivery

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Rice husks (RH) are a known agricultural residue due to their abundance of silicon, that can be extracted for the production of materials with added high-value. Although part of RH can be converted into useful products, most of it is incinerated generating a large amount of toxic compounds, being of particular importance to find economically and environmentally viable alternatives to promote the full use of RH. In this study, mesoporous silica nanoparticles (MSNs) were synthesized, considering the green chemistry principles, using sodium silicate extracted from RH as a silica source. The capacity of MSNs for loading and release the doxorubicin (DOX) chemotherapeutic drug was evaluated, in order to assess their use in drug delivery systems (DDS). MSNs exhibited attractive textural properties and colloidal stability, that contributed to a high encapsulation efficiency of DOX and to a release rate of about 40% in both simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). The in vitro cytotoxicity assays assured that our eco-friendly MSNs are not cytotoxic for healthy fibroblast cells, whilst MSNs-DOX killed about 70% of colorectal cancerous cells (Caco-2) after 72 h, demonstrating that MSNs produced from RH may have a valuable application in the pharmaceutical area as a promising platform for cancer therapy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drapanauskaite, D., Buneviciene, K., Repsiene, R., Mazeika, R., Navea, J., Baltrusaitis, J.: Physicochemical characterization of pelletized lime kiln dust as potential liming material for acidic soils. Waste Biomass Valor 12, 1267–1280 (2021)

    Google Scholar 

  2. Setiawan, W.K., Chiang, K.: Crop residues as potential sustainable precursors for developing silica materials: a review. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01126-x

    Article  Google Scholar 

  3. FAO: Crop Prospects and Food Situation—Quarterly Global Report No. 1, March 2020. Rome (2020)

  4. Mimura, A.M.S., et al.: Application of rice husk in the adsorption of Cu2+, Al3+, Ni2+e Zn2+ ions. Quim. Nova 33(6), 1279–1284 (2010)

    Google Scholar 

  5. Madeddu, C., Roda–Serrat, M.C., Christensen, K.V., El–Houri, R.B., Errico, M.: A biocascade approach towards the recovery of high-value natural products from biowaste: state-of-art and future trends. Waste Biomass Valor 12, 1143–1166 (2021)

    Google Scholar 

  6. Jamnongphol, S., Jaturapiree, A., Sukrat, K., Saowapark, T., Chaichana, E., Jongsomjit, B.: Rice husk-derived silica as a support for zirconocene/MMAO catalyst in ethylene polymerization. Waste Biomass Valor 11, 769–779 (2020)

  7. Aphane, M.E., Doucet, F.J., Kruger, R.A., Petrick, L., van der Merwe, E.M.: Preparation of sodium silicate solutions and silica nanoparticles from South African coal fly ash. Waste Biomass Valor 11, 4403–4417 (2020)

    Google Scholar 

  8. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021)

    Google Scholar 

  9. World Health Organization: The Burden of Cancer. American Cancer Society, Atlanta (2019)

    Google Scholar 

  10. Tian, B., Liu, S., Wu, S., Lu, W., Wang, D., Jin, L., Hu, B., Li, K., Wang, Z., Quan, Z.: pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf., B 154, 287–296 (2017)

    Google Scholar 

  11. Soundararajan, R., Wang, G., Petkova, A., Uchegbu, I.F., Schatzlein, A.G.: Hyaluronidase coated molecular envelope technology nanoparticles enhance drug absorption via the subcutaneous route. Mol. Pharmaceutics 17, 2599–2611 (2020)

    Google Scholar 

  12. Vallet-Regi, M., Colilla, M., Izquierdo-Barba, I., Manzano, M.: Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 23, 1–19 (2018)

    Google Scholar 

  13. Thenmozhi, R., Moorthy, M.S., Sivaguru, J., Manivasagan, P., Bharathiraja, S., Oh, Y., Oh, J.: Synthesis of silica-coated magnetic hydroxyapatite composites for drug delivery applications. J. Nanosci. Nanotechnol. 19, 1951–1958 (2019)

    Google Scholar 

  14. Lei, W., Sun, C., JIang, T., Gao, Y., Yang, Y., Zhao, Q., Wang, S.: Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C 105, 110103 (2019)

    Google Scholar 

  15. AboutAithah, K.E., Farghali, A., Swiderska-Sroda, A., Lojkowski, W., Razin, A.M., Khedr, M.: pH-controlled release system for curcumin based on functionalized dendritic mesoporous silica nanoparticles. J Nanomed. Nanotechnol. 7, 1000351 (2016)

    Google Scholar 

  16. Szewczyk, A., Prokopowicz, M., Sawicki, W., Majda, D., Walker, G.: Aminopropyl-functionalized mesoporous silica SBA-15 as drug carrier for cefazolin: adsorption profiles, release studies, and mineralization potential. Micropor. Mesopor. Mater. 274, 113–126 (2019)

    Google Scholar 

  17. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G., Chmelka, B., Stucky, G.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science. 279, 548–552 (1998)

    Google Scholar 

  18. Jahangirian, H., Lemraski, E., Webster, T.J., Rafiee-Moghaddam, R., Abdollahi, Y.: A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed. 12, 2957–2978 (2017)

    Google Scholar 

  19. Dhinasekaran, D., Raj, R., Rajendran, A.R., Purushothaman, B., Subramanian, B., Prakasarao, A., Singaravelu, G.: Chitosan mediated 5-Fluorouracil functionalized silica nanoparticle from rice husk for anticancer activity. Int. J. Biol. Macromol. 156, 969–980 (2020)

    Google Scholar 

  20. Athinarayanan, J., Periasamy, V.S., Alhazmi, M., Alatiah, K.A., Alshatwi, A.A.: Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram. Int. 41, 275–281 (2015)

    Google Scholar 

  21. Ka, M., Wahab, J.A., Hyunsik, B., Song, K., Lee, J.S., Gopiraman, M., Kim, I.S.: Allantoin-loaded porous silica nanoparticles/ polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Advances 6, 4593–4600 (2016)

    Google Scholar 

  22. Xi, H., Zhao, H.: Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH. J. Mater.Sci. 54, 4246–4258 (2018)

    Google Scholar 

  23. Chen, N., Wu, C., Chung, C., Hwu, Y., Cheng, S., Mou, C., Lo, L.: Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM). PLoS ONE 7, e44947 (2012)

    Google Scholar 

  24. Bilalis, P., Tziveleka, L., Varlas, S., Latrou, H.: pH-Sensitive nanogates based on poly(l-histidine) for controlled drug release from mesoporous silica nanoparticles. Polym. Chem. 7, 1475–1485 (2016)

    Google Scholar 

  25. Lima, S., Vasconcelos, R., Paiva, O., Cordeiro, G., Chaves, M., Filho, R., Fairbairn, E.: Production of silica gel from residual rice husk ash. Quím. Nova. 34, 71–75 (2011)

    Google Scholar 

  26. Norsuraya, S., Fozlena, H., Norhasyimi, R.: Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara amorphous-15 (SBA-15). Procedia Eng. 148, 839–846 (2016)

    Google Scholar 

  27. Galarneau, A., Cambon, H., Renzo, F., Ryoo, R., Choi, M., Fajula, F.: Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 27, 73–79 (2010)

    Google Scholar 

  28. Vainshtein, B.: Fundamentals of crystals: symmetry and methods of structural crystallography, Second edn. Springer-Verlag Berlin Heidelberg, New York (1994)

    Google Scholar 

  29. Brunauer, S., Emmett, O., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Google Scholar 

  30. Thommer, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Google Scholar 

  31. Andrade, J., Oliveira, A.G., Mariucci, V.M., Bento, A.C., Campanhoni, M.V., Nakamura, C.V., Lima, S.M., Andrade, L., Moraes, J., Hechenleitner, A., Pineda, E., Oliveira, D.: Effects of Al3 + concentration on the optical, structural, photocatalytic and cytotoxic properties of Al-doped ZnO. J Alloys Comp. 729, 978–987 (2017)

    Google Scholar 

  32. Council of Europe: European Pharmacopoeia. Council of Europe, Strasbourg (2010)

    Google Scholar 

  33. Costa, P.J.C.: Avaliação in vitro da lioequivalência de formulações farmacêuticas. Rev. Bras. Cienc. Farm. 38, 141–153 (2002)

    Google Scholar 

  34. Korsmeyer, R., Gurny, R., Doelker, E., Buri, P., Peppas, N.A.: Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25–35 (1983)

    Google Scholar 

  35. Sethuraman, K., Lakshmikan, T., Alagar, M.: Surface free energy and dielectric properties of vinyltriethoxysilane functionalized SBA-15-reinforced unsaturated polyester nanocomposites. Polym. Composite. 37, 3433–3441 (2015)

    Google Scholar 

  36. Al-Oweini, R., El-Rassy, H.: Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009)

    Google Scholar 

  37. Oliveira, L., Gonçalves, K., Boreli, F., Kobarg, J., Cardoso, M.: Mechanism of interaction between colloids and bacteria as evidenced by tailored silica–lysozyme composites. J. Mater. Chem. 22, 22851–22858 (2012)

    Google Scholar 

  38. Pourjadavi, A., Tehrani, Z.: Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): A pH-sensitive carrier for gemcitabine delivery. Mat. Sci. Eng. C. 61, 782–790 (2016)

    Google Scholar 

  39. Sanaeishoan, H., Sabbaghan, M., Mohave, F.: Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Micropor. Mesopor. Mat. 217, 219–224 (2015)

    Google Scholar 

  40. Bahrami, Z., Badiei, A., Atyabi, F., Darabi, H., Mehravi, B.: Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study. Mater. Sci. Engineer. 49, 66–74 (2015)

    Google Scholar 

  41. Wu, W., Ye, C., Xiao, H., Sun, Y., Qu, W., Li, X., Chen, M., Li, J.: Hierarchical mesoporous silica nanoparticles for tailorable drug release. Int. J. Pharm. 51, 65–72 (2016)

    Google Scholar 

  42. Choi, M., Heo, W., Kleitz, F., Ryoo, R.: Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chem. Commun. 12, 1340–1341 (2003)

    Google Scholar 

  43. Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., Vallet-Regi, M.: Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery. Chem. Mater. 21, 1000–1009 (2009)

    Google Scholar 

  44. Rajanna, S.K., Vinjamur, M., Mukhopadhyay, M.: Mechanism for formation of hollow and granular silica aerogel microspheres from rice husk ash for drug delivery. J Non–Cryst Solids 429, 226–231 (2015)

    Google Scholar 

  45. Vallet-Regi, M., Colilla, M., Gonzalez, B.: Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Rev. 40, 596–607 (2011)

    Google Scholar 

  46. Cassiers, K., Linssen, T., Mthie, M., Benjelloun, M., Schrijnemakers, K., Van Der Voort, P., Cool, P., Vansant, E.: A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem. Mater. 14, 2317–2324 (2002)

    Google Scholar 

  47. Chun, J., Gu, Y.M., Hwang, J., Oh, K.K., Lee, J.H.: Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. J Ind Eng Chem 81, 135–143 (2020)

    Google Scholar 

  48. Ortiz-Bustos, J., Martín, A., Moralez, V., Sanz, R., Garcia-Munoz, R.: Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemisuccinate: Influence of functionality type and strategies of incorporation. Micropor. Mesopor. Mat. 240, 236–245 (2017)

    Google Scholar 

  49. Ozcelik, V.O., Cahangirov, S., Ciraci, S.: Stable single-layer honeycomblike structure of silica. Phys. Rev. Lett. 112, 246803 (2014)

    Google Scholar 

  50. Mishra, A.K., Pandey, H., Agarwal, V., Ramteke, P.W., Pandey, A.C.: Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. J. Nanopart. Res. 16, 2515 (2014)

    Google Scholar 

  51. Anedda, A., Carbonaro, C.M., Clemente, F., Corpino, R., Ricci, P.C.: Blue emission in mesoporous silica excited by synchrotron radiation. Opt. Mater. 27, 958–961 (2005)

    Google Scholar 

  52. Ansari, A.A., Khan, A., Labis, J.P., Alam, M., Manthrammel, A., Ahamed, M., Akhtar, M.J., Aldalbahi, A., Ghaithan, H.: Mesoporous multi-silica layer-coated Y2O3:Eu core-shell nanoparticles: synthesis, luminescent properties and cytotoxicity evaluation. Mater. Sci. Engineer. 96, 365–373 (2019)

    Google Scholar 

  53. Anedda, A., Carbonaro, C.M., Clemente, F., Corpino, R., Ricci, P.C.: Low temperature investigation of the blue emission in mesoporous sílica. Mater. Sci. Eng. C 25, 631–634 (2005)

    Google Scholar 

  54. Gai, L., Jiang, H., Cui, D., Wang, Q.: Room temperature blue-green photoluminescence of MCM-41, MCM-48 and SBA-15 mesoporous silicas in different conditions. Micropor. Mesopor. Mater. 120, 410–413 (2009)

    Google Scholar 

  55. Vankayala, R., Hwang, K.C.: Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 30, 1–27 (2018)

    Google Scholar 

  56. Zhang, Q., Zhao, H., Li, D., Liu, L., Du, S.: A surface-grafted ligand functionalization strategy for coordinate binding of doxorubicin at surface of PEGylated mesoporous silica nanoparticles: toward pH-responsive drug delivery. Colloids Surf B: Biointerfaces. 149, 138–145 (2017)

    Google Scholar 

  57. Kubecek, O., Blaha, M., Diaz-Garcia, D., Filip, S.: Extracorporeal elimination of circulating pegylated liposomal doxorubicin (PLD) to enhance the benefit of cytostatic therapy in platinum-resistant ovarian cancer patients. Acta Med 58, 3–8 (2015)

    Google Scholar 

  58. Sabio, R., Meneguin, A.B., Ribeiro, T.C., Silva, R.R., Chorilli, M.: New insights towards mesoporous silica nanoparticles as a technological. Int. J. Pharm. 564, 379–409 (2019)

    Google Scholar 

  59. Vallet-Regi, M., Colilla, M., Izquierdo-Barba, I., Manzano, M.: Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23, 47 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Physics/UEM, to COMCAP/UEM for providing some equipment used in this work, to CAPES and CNPq (Process no. 405381/2016-6) for financial support, and to Professor Dr. Elza Kimura from Department of Pharmacy of ‘’Universidade Estadual de Maringá’’ for her cooperation with cell viability tests.

Author information

Authors and Affiliations

Authors

Contributions

JLA: conceptualization, methodology, software, data curation, writing—original draft, visualization; CAM: methodology, software, formal analysis, data curation; AGO: methodology, software, investigation; CFF:methodology, software, formal analysis, data curation; MCM: methodology, validation, formal analysis, data curation; AAWH: methodology, software, data curation, supervision; EAGP: methodology, software, data curation,  supervision; DMFO: conceptualization, resources, writing—review & editing, supervision, project administration.

Corresponding author

Correspondence to Daniela Martins Fernandes de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, J.d., Moreira, C.A., Oliveira, A.G. et al. Rice Husk-Derived Mesoporous Silica as a Promising Platform for Chemotherapeutic Drug Delivery. Waste Biomass Valor 13, 241–254 (2022). https://doi.org/10.1007/s12649-021-01520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01520-z

Keywords

Navigation