Skip to main content

Advertisement

Log in

Value-Added By-Products During Dark Fermentation of Agro-Industrial Residual Biomass: Metabolic Pathway Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The Colombian agroindustry has high diversity and availability of residual biomass year after year. These wastes are susceptible to being recovered through biological processes to reducing production costs of some raw materials and the pollutant load to the environment. This study identified the value-added by-products during the use of pig manure (PM), coffee mucilage (CM), and cocoa (CoM) through a dark fermentation process in a battery of batch reactors (200 ml bottles). The organic load (2, 5, and 8 gCOD/l), the C/N ratio (25, 35, and 45), and the ratio of the CM: CoM (3:1, 1:1, and 1:3) were evaluated. The highest hydrogen production yield of 271.3 ml H2/gCOD was associated with the experimental conditions of mixture 2 (2 gCOD/l, 35 C/N ratio, and CM: CoM 1: 3). Acetate, propionate, butyrate, and lactate fermentations were associated with the metabolic pathways of the process and participated in the soluble COD with 29, 12, 46, and 13%, respectively. It was identified that the acetate-butyrate pathway was the main metabolic pathway, and the acetate/butyrate ratio was in the range of 1:1–5.9:1. The microbial population found in the co-digestion processes worked on was dominated by the genera Clostridium, Bacillus, and Tisierella. The complex substrates used in this co-digestion process can produce value-added by-products and energy in a range of theoretical stoichiometry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, J., Yu, X., Wang, K., Shen, D.: Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int. J. Hydrog. Energy 41, 21713–21720 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.094

    Article  Google Scholar 

  2. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017). https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  Google Scholar 

  3. Mohan, S.V., Nikhil, G.N., Chiranjeevi, P., Reddy, C.N., Rohit, M.V., Kumar, A.N., Sarkar, O.: Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour. Technol. 215, 2–12 (2016). https://doi.org/10.1016/j.biortech.2016.03.130

    Article  Google Scholar 

  4. Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569–582 (2006). https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  Google Scholar 

  5. de Sá, L.R.V., Cammarota, M.C., de Oliveira, T.C., Oliveira, E.M.M., Matos, A., Ferreira-Leitão, V.S.: Pentoses, hexoses and glycerin as substrates for biohydrogen production: an approach for Brazilian biofuel integration. Int. J. Hydrog. Energy 38, 2986–2997 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.103

    Article  Google Scholar 

  6. Mohan, S.V., Mohanakrishna, G., Goud, R.K., Sarma, P.N.: Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresour. Technol. 100, 3061–3068 (2009). https://doi.org/10.1016/j.biortech.2008.12.059

    Article  Google Scholar 

  7. Saady, N.M.C.: Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int. J. Hydrog. Energy 38, 13172–13191 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  Google Scholar 

  8. Sawatdeenarunat, C., Nguyen, D., Surendra, K.C., Shrestha, S., Rajendran, K., Oechsner, H., Xie, L., Khanal, S.K.: Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour. Technol. 215, 304–313 (2016). https://doi.org/10.1016/j.biortech.2016.03.074

    Article  Google Scholar 

  9. Urbaniec, K., Bakker, R.R.: Biomass residues as raw material for dark hydrogen fermentation—a review. Int. J. Hydrog. Energy 40, 3648–3658 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.073

    Article  Google Scholar 

  10. Zhou, M., Yan, B., Wong, J.W.C., Zhang, Y.: Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248, 68–78 (2018). https://doi.org/10.1016/j.biortech.2017.06.121

    Article  Google Scholar 

  11. Cieślik, B., Konieczka, P.: A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142, 1728–1740 (2017). https://doi.org/10.1016/j.jclepro.2016.11.116

    Article  Google Scholar 

  12. Fei, Q., Fu, R., Shang, L., Brigham, C.J., Chang, H.N.: Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst. Eng. 38, 691–700 (2015). https://doi.org/10.1007/s00449-014-1308-0

    Article  Google Scholar 

  13. Harmsen, P.F.H., Hackmann, M.M., Bos, H.L.: Green building blocks for bio-based plastics. Biofuels Bioprod. Biorefining 8, 306–324 (2014). https://doi.org/10.1002/bbb.1468

    Article  Google Scholar 

  14. Singhania, R.R., Patel, A.K., Christophe, G., Fontanille, P., Larroche, C.: Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour. Technol. 145, 166–174 (2013). https://doi.org/10.1016/j.biortech.2012.12.137

    Article  Google Scholar 

  15. Calt, E.A.: Products produced from organic waste using managed ecosystem fermentation. J. Sustain. Dev. 8, 43 (2015). https://doi.org/10.5539/jsd.v8n3p43

    Article  Google Scholar 

  16. Soares, J.F., Confortin, T.C., Todero, I., Mayer, F.D., Mazutti, M.A.: Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew. Sustain. Energy Rev. 117, (2020). https://doi.org/10.1016/j.rser.2019.109484

    Article  Google Scholar 

  17. Oleskowicz-Popiel, P., Kádár, Z., Heiske, S., Klein-Marcuschamer, D., Simmons, B.A., Blanch, H.W., Schmidt, J.E.: Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming—evaluation of a concept for a farm-scale biorefinery. Bioresour. Technol. 104, 440–446 (2012). https://doi.org/10.1016/j.biortech.2011.11.060

    Article  Google Scholar 

  18. Shen, D., Yin, J., Yu, X., Wang, M., Long, Y., Shentu, J., Chen, T.: Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Bioresour. Technol. 227, 125–132 (2017). https://doi.org/10.1016/j.biortech.2016.12.048

    Article  Google Scholar 

  19. Han, W., Wang, X., Ye, L., Huang, J., Tang, J., Li, Y., Ren, N.: Fermentative hydrogen production using wheat flour hydrolysate by mixed culture. Int. J. Hydrog. Energy 40, 4474–4480 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.016

    Article  Google Scholar 

  20. Khanal, S.K., Chen, W.-H., Li, L., Sung, S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrog. Energy 29, 1123–1131 (2004). https://doi.org/10.1016/j.ijhydene.2003.11.002

    Article  Google Scholar 

  21. Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., Wang, Y.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 33, 2653–2658 (2013). https://doi.org/10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  22. Zhou, J., Zhang, R., Liu, F., Yong, X., Wu, X., Zheng, T., Jiang, M., Jia, H.: Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 217, 44–49 (2016). https://doi.org/10.1016/j.biortech.2016.02.077

    Article  Google Scholar 

  23. Dahiya, S., Sarkar, O., Swamy, Y.V., Mohan, S.V.: Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 182, 103–113 (2015). https://doi.org/10.1016/j.biortech.2015.01.007

    Article  Google Scholar 

  24. Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., Yu, H.-Q.: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res. 46, 799–807 (2012). https://doi.org/10.1016/j.watres.2011.11.047

    Article  Google Scholar 

  25. Khongkliang, P., Jehlee, A., Kongjan, P., Reungsang, A., O-Thong, S.: High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int. J. Hydrog. Energy. 44, 31841–31852 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.022

    Article  Google Scholar 

  26. Martinez-Burgos, W.J., Sydney, E.B., de Paula, D.R., Medeiros, A.B.P., de Carvalho, J.C., Soccol, V.T., de Souza Vandenberghe, L.P., Woiciechowski, A.L., Soccol, C.R.: Biohydrogen production in cassava processing wastewater using microbial consortia: process optimization and kinetic analysis of the microbial community. Bioresour. Technol. 309, (2020). https://doi.org/10.1016/j.biortech.2020.123331

    Article  Google Scholar 

  27. Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.-P.: Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int. J. Hydrog. Energy 39, 7476–7485 (2014). https://doi.org/10.1016/j.ijhydene.2013.08.079

    Article  Google Scholar 

  28. Lopez-Hidalgo, A.M., Alvarado-Cuevas, Z.D., De Leon-Rodriguez, A.: Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159, 2–41 (2018). https://doi.org/10.1016/j.energy.2018.06.124

    Article  Google Scholar 

  29. Montoya, A.C.V., da Silva Mazareli, R.C., Delforno, T.P., Centurion, V.B., Sakamoto, I.K., de Oliveira, V.M., Silva, E.L., Varesche, M.B.A.: Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. Int. J. Hydrog. Energy 44, 21434–21450 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.115

    Article  Google Scholar 

  30. Hernández, M.A., Susa, M.R., Andres, Y.: Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresour. Technol. 168, 112–118 (2014). https://doi.org/10.1016/j.biortech.2014.02.101

    Article  Google Scholar 

  31. Tenca, A., Schievano, A., Perazzolo, F., Adani, F., Oberti, R.: Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour. Technol. 102, 8582–8588 (2011). https://doi.org/10.1016/j.biortech.2011.03.102

    Article  Google Scholar 

  32. Ramsay, I.R., Pullammanappallil, P.C.: Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12, 247–257 (2001). https://doi.org/10.1023/A:1013116728817

    Article  Google Scholar 

  33. Mäkinen, A.E., Nissilä, M.E., Puhakka, J.A.: Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int. J. Hydrog. Energy 37, 12234–12240 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.158

    Article  Google Scholar 

  34. APHA: Standard Methods for the Examination of Water and Wastewater. APHA, Washington (2005)

    Google Scholar 

  35. Keegan, K.P., Glass, E.M., Meyer, F.: Microbial environmental genomics. Microb. Ecol. 53, 367–368 (2007). https://doi.org/10.1007/s00248-007-9214-5

    Article  Google Scholar 

  36. Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J., Tappu, R.: MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, 1–12 (2016). https://doi.org/10.1371/journal.pcbi.1004957

    Article  Google Scholar 

  37. Parks, D.H., Tyson, G.W., Hugenholtz, P., Beiko, R.G.: STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014). https://doi.org/10.1093/bioinformatics/btu494

    Article  Google Scholar 

  38. Marone, A., Ayala-Campos, O.R., Trably, E., Carmona-Martínez, A.A., Moscoviz, R., Latrille, E., Steyer, J.-P., Alcaraz-Gonzalez, V., Bernet, N.: Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int. J. Hydrog. Energy 42, 1609–1621 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.166

    Article  Google Scholar 

  39. Argun, H., Dao, S.: Hydrogen gas production from waste peach pulp by natural microflora. Waste Biomass Valoriz. 9, 2117–2124 (2018). https://doi.org/10.1007/s12649-017-9990-1

    Article  Google Scholar 

  40. Crognale, S., Tonanzi, B., Valentino, F., Majone, M., Rossetti, S.: Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Sci. Total Environ. 689, 765–773 (2019)

    Article  Google Scholar 

  41. Bolaji, I.O., Dionisi, D.: Acidogenic fermentation of vegetable and salad waste for chemicals production: effect of pH buffer and retention time. J. Environ. Chem. Eng. 5, 5933–5943 (2017)

    Article  Google Scholar 

  42. Oceguera-Contreras, E., Aguilar-Juárez, O., Oseguera-Galindo, D., Macías-Barragán, J., Bolaños-Rosales, R., Mena-Enríquez, M., Arias-García, A., Montoya-Buelna, M., Graciano-Machuca, O., De León-Rodríguez, A.: Biohydrogen production by vermihumus-associated microorganisms using agro industrial wastes as substrate. Int. J. Hydrog. Energy. 44, 9856–9865 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.236

    Article  Google Scholar 

  43. Soltan, M., Elsamadony, M., Tawfik, A.: Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes. Appl. Energy 185, 929–938 (2017). https://doi.org/10.1016/j.apenergy.2016.10.002

    Article  Google Scholar 

  44. Chatellard, L., Trably, E., Carrère, H.: The type of carbohydrates specifically selects microbial community structures and fermentation patterns. Bioresour. Technol. 221, 541–549 (2016). https://doi.org/10.1016/j.biortech.2016.09.084

    Article  Google Scholar 

  45. Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D.: Volatile fatty acids production from food wastes for biorefinery platforms: a review. J. Environ. Manag. 226, 278–288 (2018). https://doi.org/10.1016/j.jenvman.2018.08.039

    Article  Google Scholar 

  46. Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G.: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025–2029 (2006). https://doi.org/10.1021/es052252b

    Article  Google Scholar 

  47. Kim, I.S., Hwang, M.H., Jang, N.J., Hyun, S.H., Lee, S.T.: Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrog. Energy 29, 1133–1140 (2004). https://doi.org/10.1016/j.ijhydene.2003.08.017

    Article  Google Scholar 

  48. Mockaitis, G., Bruant, G., Guiot, S.R., Peixoto, G., Foresti, E., Zaiat, M.: Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew. Energy 145, 1388–1398 (2020). https://doi.org/10.1016/j.renene.2019.06.134

    Article  Google Scholar 

  49. Banu, J.R., Kavitha, S., Kannah, R.Y., Bhosale, R.R., Kumar, G.: Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.122378

    Article  Google Scholar 

  50. Cavinato, C., Da Ros, C., Pavan, P., Bolzonella, D.: Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour. Technol. 223, 59–64 (2017). https://doi.org/10.1016/j.biortech.2016.10.041

    Article  Google Scholar 

  51. Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-J., Bhatia, S.K., Banu, J.R., Kim, S.-H.: A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour. Technol. 287, (2019). https://doi.org/10.1016/j.biortech.2019.121427

    Article  Google Scholar 

  52. Chen, Y., Li, X., Zheng, X., Wang, D.: Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Res. 47, 615–622 (2013). https://doi.org/10.1016/j.watres.2012.10.035

    Article  Google Scholar 

  53. Li, X., Zhang, W., Ma, L., Lai, S., Zhao, S., Chen, Y., Liu, Y.: Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Bioresour. Technol. 220, 523–529 (2016). https://doi.org/10.1016/j.biortech.2016.08.066

    Article  Google Scholar 

  54. Liang, S., McDonald, A.G., Coats, E.R.: Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag. 34, 2022–2027 (2014). https://doi.org/10.1016/j.wasman.2014.07.009

    Article  Google Scholar 

  55. Shi, E., Li, J., Zhang, M.: Application of IWA Anaerobic Digestion Model No. 1 to simulate butyric acid, propionic acid, mixed acid, and ethanol type fermentative systems using a variable acidogenic stoichiometric approach. Water Res. 161, 242–250 (2019). https://doi.org/10.1016/j.watres.2019.05.094

    Article  Google Scholar 

  56. Zhou, M., Zhou, J., Tan, M., Du, J., Yan, B., Wong, J.W.C., Zhang, Y.: Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. Bioresour. Technol. 245, 44–51 (2017). https://doi.org/10.1016/J.BIORTECH.2017.08.152

    Article  Google Scholar 

  57. Tang, J., Wang, X.C., Hu, Y., Zhang, Y., Li, Y.: Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour. Technol. 224, 544–552 (2017). https://doi.org/10.1016/j.biortech.2016.11.111

    Article  Google Scholar 

  58. Hussain, A., Filiatrault, M., Guiot, S.R.: Acidogenic digestion of food waste in a thermophilic leach bed reactor: effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Bioresour. Technol. 245, 1–9 (2017). https://doi.org/10.1016/j.biortech.2017.08.130

    Article  Google Scholar 

  59. Feng, K., Li, H., Zheng, C.: Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 270, 180–188 (2018). https://doi.org/10.1016/j.biortech.2018.09.035

    Article  Google Scholar 

  60. Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., Kamiński, M.: Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 91, 665–694 (2018). https://doi.org/10.1016/J.RSER.2018.04.043

    Article  Google Scholar 

  61. Akutsu, Y., Lee, D.-Y., Li, Y.-Y., Noike, T.: Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrog. Energy 34, 5365–5372 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.052

    Article  Google Scholar 

  62. Quéméneur, M., Hamelin, J., Benomar, S., Guidici-Orticoni, M.-T., Latrille, E., Steyer, J.-P., Trably, E.: Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides. Int. J. Hydrog. Energy 36, 11654–11665 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.010

    Article  Google Scholar 

  63. Cheng, J., Su, H., Zhou, J., Song, W., Cen, K.: Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int. J. Hydrog. Energy 36, 2093–2101 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.021

    Article  Google Scholar 

  64. Hu, B., Chen, S.: Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int. J. Hydrog. Energy 32, 3266–3273 (2007). https://doi.org/10.1016/j.ijhydene.2007.03.005

    Article  Google Scholar 

  65. Sołowski, G., Shalaby, M.S., Abdallah, H., Shaban, A.M., Cenian, A.: Production of hydrogen from biomass and its separation using membrane technology. Renew. Sustain. Energy Rev. 82, 3152–3167 (2018). https://doi.org/10.1016/j.rser.2017.10.027

    Article  Google Scholar 

  66. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015). https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  Google Scholar 

  67. Jiang, L., Fu, H., Yang, H.K., Xu, W., Wang, J., Yang, S.-T.: Butyric acid: applications and recent advances in its bioproduction. Biotechnol. Adv. 36, 2101–2117 (2018)

    Article  Google Scholar 

  68. Chen, H., Meng, H., Nie, Z., Zhang, M.: Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Bioresour. Technol. 128, 533–538 (2013). https://doi.org/10.1016/j.biortech.2012.10.121

    Article  Google Scholar 

  69. Mendez, D., Cabeza, I., Moreno, N., Riascos, C.: Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chem. Eng. Trans. 49, 277–282 (2016)

    Google Scholar 

  70. Bozell, J.J., Petersen, G.R.: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010)

    Article  Google Scholar 

  71. de Jong, E., Higson, A., Walsh, P., Wellisch, M.: Bio-based chemicals value added products from biorefineries, IEA Bioenergy. Task42 Biorefinery 34 (2012)

  72. Choi, S., Song, C.W., Shin, J.H., Lee, S.Y.: Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28, 223–239 (2015). https://doi.org/10.1016/j.ymben.2014.12.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from MinCiencias (Ministry of Science, Technology, and Innovation) - Project Number FP44842-38-2017 – contract 038-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ochoa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, C., Hernández, M.A., Bayona, O.L. et al. Value-Added By-Products During Dark Fermentation of Agro-Industrial Residual Biomass: Metabolic Pathway Analysis. Waste Biomass Valor 12, 5937–5948 (2021). https://doi.org/10.1007/s12649-021-01421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01421-1

Keywords

Navigation