Skip to main content

Advertisement

Log in

Hydrogen Gas Production from Waste Peach Pulp by Natural Microflora

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Dark fermentative hydrogen gas production from waste peach pulp was studied without external microbial culture inoculation. First, most suitable pulp concentration for hydrogen production was determined in bench scale serum bottles then a 140 L pilot scale reactor was operated at most convenient pulp concentration. During the bench scale experiments the pulp concentration was varied between 3.42 and 170.80 g TS/L and the highest cumulative hydrogen volumes were obtained at 102.5 and 170.8 g TS/L, respectively. The initial pulp concentration of 34.16 g TS/L showed the best performance in terms of hydrogen formation yield (180 mL H2/g COD) and rate (6.44 mL H2/h). Hydrogen yield and rate increased up to 34.16 g TS/L due to substrate limitation. However, higher pulp concentrations resulted in substrate inhibition. This result was in accordance with the kinetic analysis where the substrate inhibition constant was determined as 43.86 g TS/L. The pilot scale reactor operated at optimum 34.16 g TS/L pulp concentration resulted in 323.67 mL H2/g COD and 3900 mL H2/h hydrogen formation, respectively. Our results demonstrated that waste peach pulp could be used both as substrate and inoculum source for hydrogen gas production when the initial substrate concentration is adjusted properly.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Das, D., Veziroglu, T.: Advances in biological hydrogen production processes. Int. J. Hydrogen Energy. 33(21), 6046–6057 (2008)

    Article  Google Scholar 

  2. Valdez-Vazquez, I., Poggi-Varaldo, H.M.: Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 13, 1000–1013 (2009)

    Article  Google Scholar 

  3. Gavrilescu, D.: Energy from biomass in pulp and paper. Environ. Eng. Manag. J. 7, 537–546 (2008)

    Article  Google Scholar 

  4. Piera, M., Martínez-Val, J.M., José Montes, M.: Safety issues of nuclear production of hydrogen. Energy Convers. Manag. 47, 2732–2739 (2006).

    Article  Google Scholar 

  5. Şengül, E., Erdener, H., Akay, R.G., Yücel, H., Baç, N., Eroǧlu, I.: Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int. J. Hydrogen Energy. 34, 4645–4652 (2009)

    Article  Google Scholar 

  6. Bayrakceken, A., Smirnova, A., Kitkamthorn, U., Aindow, M., Turker, L., Eroglu, I., Erkey, C.: Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. J. Power Sources. 179, 532–540 (2008)

    Article  Google Scholar 

  7. Li, C., Fang, H.H.P.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39 (2007)

    Article  MathSciNet  Google Scholar 

  8. Ozmihci, S., Kargi, F.: Dark fermentative bio-hydrogen production from waste wheat starch using co-culture with periodic feeding: Effects of substrate loading rate. Int. J. Hydrogen Energy. 36, 7089–7093 (2011)

    Article  Google Scholar 

  9. Kim, M., Oh, S., Rakwal, R., Liu, C., Zhang, Z.: Simultaneous organic solids disintegration and fermentative hydrogen production by pretreated sludge generated from wastewater treatment plant. Int. J. Environ. Sci. Dev. 4, 617–623 (2013)

    Article  Google Scholar 

  10. Argun, H., Dao, S.: Hydrogen gas production from waste peach pulp by dark fermentation and electrohydrolysis. Int. J. Hydrogen Energy. 41, 11568–11576 (2016)

    Article  Google Scholar 

  11. Kim, D.-H., Kim, S.-H., Shin, H.-S.: Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb. Technol. 45, 181–187 (2009)

    Article  Google Scholar 

  12. Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C., Signorini, A.: Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew. Energy. 68, 6–13 (2014)

    Google Scholar 

  13. Gupta, S.K., Kumari, S., Reddy, K., Bux, F.: Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ. Technol. 34, 1653–1670 (2013)

    Article  Google Scholar 

  14. Azbar, N., Levin, D.B.: State of the Art and Progress in Production of Biohydrogen. Bentham Science Publishers, Dubai (2012)

    Book  Google Scholar 

  15. Tapia-Venegas, E., Ramirez-Morales, J.E., Silva-Illanes, F., Toledo-Alarcón, J., Paillet, F., Escudie, R., Lay, C.H., Chu, C.Y., Leu, H.J., Marone, A., Lin, C.Y., Kim, D.H., Trably, E., Ruiz-Filippi, G.: Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev. Environ. Sci. Biotechnol. 14, 761–785 (2015)

    Article  Google Scholar 

  16. Singh, A., Rathore, D. (eds.): Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi (2017).

    Google Scholar 

  17. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S.H., Nemestóthy, N., Bélafi-Bakó, K.: Lignocellulose biohydrogen: practical challenges and recent progress. Renew. Sustain. Energy Rev. 44, 728–737 (2015)

    Article  Google Scholar 

  18. Nanqi, R., Wanqian, G., Bingfeng, L., Guangli, C., Jie, D.: Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr. Opin. Biotechnol. 22, 365–370 (2011)

    Article  Google Scholar 

  19. Shah, A.T., Favaro, L., Alibardi, L., Cagnin, L., Sandon, A., Cossu, R., Casella, S., Basaglia, M.: Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl. Energy. 176, 116–124 (2016)

    Article  Google Scholar 

  20. Soltan, M., Elsamadony, M., Tawfik, A.: Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes. Appl. Energy. 185, 929–938 (2017)

    Article  Google Scholar 

  21. Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Su, H., Zhou, J., Cen, K.: Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Appl. Energy. 139, 9–16 (2015)

    Article  Google Scholar 

  22. Zhang, Y., Zhang, F., Chen, M., Chu, P., Ding, J., Zeng, R.J.: Hydrogen supersaturation in extreme-thermophilic (70 °C) mixed culture fermentation. Appl. Energy. 109, 213–219 (2013)

    Article  Google Scholar 

  23. Fuess, L.T., Mazine Kiyuna, L.S., Garcia, M.L., Zaiat, M.: Operational strategies for long-term biohydrogen production from sugarcane stillage in a continuous acidogenic packed-bed reactor. Int. J. Hydrogen Energy. 41, 8132–8145 (2015)

    Article  Google Scholar 

  24. Kim, D.H., Kim, S.H., Kim, H.W., Kim, M.S., Shin, H.S.: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour. Technol. 102, 8501–8506 (2011)

    Article  Google Scholar 

  25. Marone, A., Massini, G., Patriarca, C., Signorini, A., Varrone, C., Izzo, G.: Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int. J. Hydrogen Energy. 37, 5612–5622 (2012)

    Article  Google Scholar 

  26. http://faostat3.fao.org/browse/Q/QC/E

  27. Jain, A.: Biohydrogen production from cull peach medium by hydperthermophilic bacterium Thermotoga neapolitana. http://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1653&context=all_theses, (2009)

  28. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  29. Rice, E.W., Baird, R.B., Eaton, A.D.: L.S.C.: Standard methods for the examination of water and wastewater. Am. Water Work. Assoc. Public Work. Assoc. Environ. Fed. 1469 (2012)

  30. Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  Google Scholar 

  31. Lee, K., Hsu, Y., Lo, Y., Lin, P., Lin, C., Chang, J.: Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrogen Energy. 33, 1565–1572 (2008)

    Article  Google Scholar 

  32. Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R.: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations. Int. J. Hydrogen Energy. 33, 6109–6115 (2008)

    Article  Google Scholar 

  33. Hallenbeck, P.C.: Fundamentals of biohydrogen. In: Pandey, A., Chang, J.S., Hallenbeck, P.C., and Larroche, C. (eds.) Biohydrogen, pp. 25–43. Elsevier, San Diego (2013)

    Chapter  Google Scholar 

  34. Guo, X.M., Trably, E., Latrille, E., Carrère, H., Steyer, J.-P.: Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrogen Energy. 35, 10660–10673 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Turkish Scientific Research Council (TUBİTAK) with a Grant Number 113M994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidayet Argun.

Additional information

All rights of the findings of this study are reserved by a patent application by Dr. H. Argun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argun, H., Dao, S. Hydrogen Gas Production from Waste Peach Pulp by Natural Microflora. Waste Biomass Valor 9, 2117–2124 (2018). https://doi.org/10.1007/s12649-017-9990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9990-1

Keywords

Navigation