Skip to main content

Advertisement

Log in

Review on Conversion of Lignin Waste into Value-Added Resources in Tropical Countries

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The potential of lignin is huge mainly in refining into biofuels and useful chemicals. Tropical countries have large reserve of biomass; however, lignin is underutilized. Hence, this paper aims to evaluate the lignin potential from biomass and current utilization level in tropical countries such as Brazil, Africa, and Southeast Asia. This paper relevant information is derived from multiple sources, included papers from ISI and Scopus indexed journals, international databases, and online patent search engine. In short, Brazil, has the largest lignin potential, mainly from sugarcane industry, and the highest lignin utilization level at TRL8. Africa had limited information and the least reported amount of studies on biomass available in the studied regions. Southeast Asia countries have oil palm and sugarcane as their largest lignin sources, and a TRL4 lignin utilization level. In Malaysia, oil palm refinery residues are the largest sources of lignin, which are readily to be extracted and processed into value-added products. Lignin utilization industry is also supported by some government policies. In this case, integrated biorefinery is a promising approach in achieving feasible conversion and utilization of lignin in Malaysia, where it adds value to various agricultures wastes produced, while also reducing the waste disposal problems.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, H., Pu, Y., Ragauskas, A., Yang, B.: A Review: From lignin to valuable products–strategies, challenges, and prospects. Biores. Technol. 271, 449–461 (2019)

    Article  Google Scholar 

  2. Davis, J.R., Sello, J.K.: Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl. Microbiol. Biotechnol. 86(3), 921–929 (2010)

    Article  Google Scholar 

  3. Loy, A.C.M., Gan, D.K.W., Yusup, S., Chin, B.L.F., Lam, M.K., Shahbaz, M., Unrean, P., Acda, M.N., Rianawati, E.: Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Biores. Technol. 261, 213–222 (2018)

    Article  Google Scholar 

  4. Ng, Q.H., Chin, B.L.F., Yusup, S., Loy, A.C.M., Chong, K.Y.Y.: Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM). Appl. Therm. Eng. 138, 336–345 (2018)

    Article  Google Scholar 

  5. Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., Kumar, G.: A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Biores. Technol. 271, 462–472 (2018)

    Article  Google Scholar 

  6. Xu, R., Zhang, K., Liu, P., Han, H., Zhao, S., Kakade, A., Khan, A., Du, D., Li, X.: Lignin depolymerization and utilization by bacteria. Biores. Technol. 269, 557–566 (2018)

    Article  Google Scholar 

  7. Bu, Q., Lei, H., Zacher, A.H., Wang, L., Ren, S., Liang, J., Wei, Y., Tang, J., Zhang, Q., Ruan, R.: A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresources Technology 124, 470–477 (2012)

    Article  Google Scholar 

  8. Carrott, P.J.M., Carrott, M.R.: Lignin–from natural adsorbent to activated carbon: a review. Biores. Technol. 98(12), 2301–2312 (2007)

    Article  Google Scholar 

  9. Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., Cheng, Y., Addy, M., Lu, Q., Omar, M.M., Liu, Y., Wang, Y., Dai, L., Anderson, E., Peng, P., Lei, H., Ruan, R.: Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Biores. Technol. 241, 1118–1126 (2017)

    Article  Google Scholar 

  10. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)

    Article  Google Scholar 

  11. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T.: Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015)

    Article  Google Scholar 

  12. Budarin, V.L., Shuttleworth, P.S.: Use of green chemical technologies in an integrated biorefinery. Energy Environ. Sci. 4, 471–479 (2011)

    Article  Google Scholar 

  13. Clark, J.H., Farmer, T.J., Herrero-Davila, L., Sherwood, J.: Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 18(14), 3914–3934 (2016)

    Article  Google Scholar 

  14. Ahuja, K., Deb, S.: Lignin market share – industry size, growth analysis report 2017–2024. Global Market Insights. https://www.gminsights.com/industry-analysis/lignin-market (2019). Accessed 26 May 2019.

  15. Horizon 2020: Technology Readiness Level. Extract from Part 19 – Commission Decision C(2014)4995. European Commission. http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf (2014). Accessed on 27 February 2020.

  16. Zhao, C., Jiang, E., Chen, A.: Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J. Energy Inst. 90, 902–913 (2017)

    Article  Google Scholar 

  17. Carrier, M., Windt, M., Ziegler, B., Appelt, J., Saake, B., Meier, D., Bridgwater, A.: Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. Chemsuschem 10, 3212–3224 (2017)

    Article  Google Scholar 

  18. Fan, L., Chen, P., Zhou, N., Liu, S., Zhang, Y., Liu, Y., Wang, Y., Omar, M.M., Peng, P., Addy, M., Cheng, Y., Ruan, R.: In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Biores. Technol. 247, 851–858 (2018)

    Article  Google Scholar 

  19. Collard, F.X., Blin, J.: A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable Sustainable Energy Rev. 38, 594–608 (2014)

    Article  Google Scholar 

  20. Ma, Z., Ghosh, A., Asthana, N., van Bokhoven, J.: Optimization of the reaction conditions for catalytic fast pyrolysis of pretreated lignin over zeolite for the production of phenol. ChemCatChem. 9, 954–961 (2017)

    Article  Google Scholar 

  21. Santana Junior, J.A., Carvalho, W.S., Ataide, C.H.: Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial kraft lignins. Industrial Crops and Productins 111, 126–132 (2018)

    Article  Google Scholar 

  22. Duan, D., Ruan, R., Wang, Y., Liu, Y., Dai, L., Zhao, Y., Zhou, Y., Wu, Q.: Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Biores. Technol. 251, 57–62 (2018)

    Article  Google Scholar 

  23. Shao, L., Zhang, Q., You, T., Zhang, X., Xu, F.: Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media. Biores. Technol. 264, 238–243 (2018)

    Article  Google Scholar 

  24. Zhang, J., Zhang, F., Guo, S.: Three-dimensional composite of Co3O4 nanoparticles and nitrogen doped reduced graphene oxide for lignin model compounds oxidation. New J. Chem. 42, 11117–11123 (2018)

    Article  Google Scholar 

  25. Pelzer, A., Sturgeon, M.R., Yanez, A.W., Chupka, G., O'Brien, M.K.R., Katahira, R., Cortright, R., Woods, L., Beckham, G.T., Broadbelt, L.J.: Acidolysis of a-O-4 aryl-1. ether bonds in lignin model compounds: a modeling and experimental study. ACS Sustainable Chem. Eng. 3, 1339–1347 (2015).

  26. Wan, X., Tian, D., Shen, F., Hu, J., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y.: Fractionating wheat straw via phosphoric acid with hydrogen peroxide pretreatment and structural elucidation of the derived lignin. Energy Fuels 32, 5218–5225 (2018)

    Article  Google Scholar 

  27. Huang, X., Zhu, J., Korányi, T.I., Boot, M.D., Hensen, E.J.: Effective release of lignin fragments from lignocellulose by Lewis Acid metal triflates in the lignin-first approach. Chemsuschem 9, 3262–3267 (2016)

    Article  Google Scholar 

  28. Jastrzebski, R., Constant, S., Lancefield, C.S., Westwood, N.J., Weckhuysen, B.M., Bruijnincx, P.C.: Tandem catalytic depolymerization of lignin by water-tolerant Lewis acids and rhodium complexes. Chemsuschem 9, 2074–2079 (2016)

    Article  Google Scholar 

  29. Deepa, A.K., Dhepe, P.L.: Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal. 5, 365–379 (2014)

    Article  Google Scholar 

  30. Janesko, B.G.: Acid-catalyzed hydrolysis of lignin beta-O-4 linkages in ionic liquid solvents: a computational mechanistic study. PCCP 16, 5423–5433 (2014)

    Article  Google Scholar 

  31. Chen, L., Dou, J., Ma, Q., Li, N., Wu, R., Bian, H., Yelle, D.J., Vuorinen, T., Fu, S., Pan, X., Zhu, J.: Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci. Adv. 3, e1701735 (2017)

    Article  Google Scholar 

  32. Dai, J., Patti, A.F., Longe, L., Garnier, G., Saito, K.: Oxidized lignin depolymerization using formate ionic liquid as catalyst and solvent. ChemCatChem. 9, 2684–2690 (2017)

    Article  Google Scholar 

  33. Jia, S., Cox, B.J., Guo, X., Zhang, Z.C., Ekerdt, J.G.: Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind. Eng. Chem. Res. 50, 849–855 (2010)

    Article  Google Scholar 

  34. Dabral, S., Engel, J., Mottweiler, J., Spoehrle, S.S.M., Lahive, C.W., Bolm, C.: Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem. 20, 170–182 (2018)

    Article  Google Scholar 

  35. Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T.: Base-catalyzed depolymerization of biorefinery lignins. ACS Sustainable Chem. Eng. 4, 1474–1486 (2016)

    Article  Google Scholar 

  36. Miller, J.E., Evans, L.R., Mudd, J.E., Kara, A.B.: Batch microreactor studies of lignin depolymerization by bases. 2. Aqueous solvents. Sandia National Laboratories Report (2002).

  37. Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., Beckham, G.T.: Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem. 16, 824–835 (2014)

    Article  Google Scholar 

  38. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G., Sels, B.: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018)

    Article  Google Scholar 

  39. Shuai, L., Amiri, M.T., Questell-Santiago, Y.M., Héroguel, F., Li, Y., Kim, H., Meilan, R., Chapple, C., Ralph, J., Luterbacher, J.S.: Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016)

    Article  Google Scholar 

  40. He, W., Gao, W., Fatehi, P.: Oxidation of Kraft lignin with hydrogen peroxide and its application as a dispersant for Kaolin suspensions. ACS Sustainable Chem. Eng. 5, 10597–10605 (2017)

    Article  Google Scholar 

  41. Wang, S., Gao, W., Li, H., Xiao, L.P., Sun, R.C., Song, G.: Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported Zinc molybdate catalyst. Chemsuschem 11, 2114–2123 (2018)

    Article  Google Scholar 

  42. Xiao, L.P., Wang, S., Li, H., Li, Z., Shi, Z.J., Xiao, L., Sun, R.C., Fang, Y., Song, G.: Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube-supported molybdenum oxide. ACS Catal. 7, 7535–7542 (2017)

    Article  Google Scholar 

  43. Anderson, E., Crisci, A., Murugappan, K., Román-Leshkov, Y.: Bifunctional molybdenum polyoxometalates for the combined hydrodeoxygenation and alkylation of lignin-derived model phenolics. Chemsuschem 10, 2226–2234 (2017)

    Article  Google Scholar 

  44. Bjelic, A., Grilc, M., Likozar, B.: Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: intrinsic microkinetics and transport phenomena. Chem. Eng. J. 333, 240–259 (2018)

    Article  Google Scholar 

  45. Huang, X., Morales Gonzalez, O.M., Zhu, J., Koranyi, T.I., Boot, M.D., Hensen, E.J.M.: Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chem. 19, 175–187 (2017).

  46. Song, Q., Wang, F., Cai, J.Y., Wang, Y.H., Zhang, J.J., Yu, W.Q., Xu, J.: Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation hydrogenolysis process. Energy Environ. Sci. 6, 994–1007 (2013)

    Article  Google Scholar 

  47. Klein, I., Saha, B., Abu-Omar, M.M.: Lignin depolymerization over Ni/C catalyst in methanol, a continuation: effect of substrate and catalyst loading. Catal. Sci. Technol. 5, 3242–3245 (2015)

    Article  Google Scholar 

  48. Ma, R., Xu, Y., Zhang, X.: Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem 8, 24–51 (2015)

    Article  Google Scholar 

  49. Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., Labidi, J.: Lignin oxidation and depolymerisation in ionic liquids. Green Chem. 18, 834–841 (2016)

    Article  Google Scholar 

  50. Behling, R., Valange, S., Chatel, G.: Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends. Green Chem. 18, 1839–1854 (2016)

    Article  Google Scholar 

  51. Cheng, F., Brewer, C.E.: Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew. Sustain. Energy Rev. 72, 673–722 (2017)

    Article  Google Scholar 

  52. Dale, B. E., Kim, S.: Biomass Refining Global Impact–The Biobased Economy of the 21st Century. in Biorefineries‐Industrial Processes and Products. In: Kamn, B., Gruber, P.R., Kamm, M. (eds.) Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, pp. 41–66. Wiley Online Library (2008).

  53. Hileman, J. I., Wong, H. M., Ortiz, D., Brown, N., Maurice, L., Rumizen, M.: The Feasibility and Potential Environmental Benefits of Alternative Fuels for Commercial Aviation. 26th International Congress of Aeronautical Science, Alaska (2008).

  54. Amezcua-Allieri, M.A., Aburto, J.: Conversion of Lignin to Heat and Power, Chemicals or Fuels into the Transition Energy Strategy. In: Poletto, M. (ed.) Lignin Trends and Applications, pp. 145–160. InTech, Croatia (2018)

    Google Scholar 

  55. Smolarski, N.: High-Value Opportunities for Lignin: Unlocking Its Potential. Frost Sullivan. http://www.frost.com/sublib/display-market-insight-top.do?id=269017995 (2012). Accessed on 26 May 2019.

  56. Hodásová, Ľ, Jablonsky, M., Andrea, S., Haz, A.: Lignin, potential products and their market value. Wood Research 60, 973–986 (2015)

    Google Scholar 

  57. Duval, A., Lawoko, M.: A review on lignin-based polymeric, micro- and nano- structured materials. React. Funct. Polym. 85, 78–96 (2014)

    Article  Google Scholar 

  58. Karaaslan, M., Tshabalala, M., Gisela, B.D.: Wood hemicellulose/chitosan-based semi: Interpenetrating network hydrogels: Mechanical, swelling and controlled drug release properties. BioResources 5(2), 1036–1054 (2010)

    Google Scholar 

  59. Liang, X., Huang, Z., Zhang, Y., Hu, H., Liu, Z.: Synthesis and properties of novel superabsorbent hydrogels with mechanically activated sugarcane bagasse and acrylic acid. Polym. Bull. 70, 1781–1794 (2013)

    Article  Google Scholar 

  60. Thakur, V.K., Thakur, M.K.: Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72, 834–837 (2015)

    Article  Google Scholar 

  61. Upadhyaya, L., Singh, J., Agarwal, V., Tewari, R.P.: Biomedical applications of carboxymethyl chitosans. Carbohyd. Polym. 91, 452–466 (2012)

    Article  Google Scholar 

  62. Vishtal, A., Kraslawski, A.: Challenges in Industrial Applications of Technical Lignin. BioResources 6(3), 3547–3568 (2011)

    Article  Google Scholar 

  63. Singhvi, M.S., Chaudhari, S., Gokhale, D.V.: Lignocellulose Processing: A Current Challenge. RCS Advances 4(16), 8271–8277 (2014)

    Google Scholar 

  64. Xie, S., Ragauskas, A.J., Yuan, J.S.: Lignin Conversion: Opportunities and Challenges for the Integrated Biorefinery. Industrial Biotechnology 12(3), 161–167 (2016)

    Article  Google Scholar 

  65. Chio, C., Sain, M., Qin, W.: Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232–249 (2019)

    Article  Google Scholar 

  66. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E.: Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 344, 1246843 (2014)

    Article  Google Scholar 

  67. ETC Group: The new biomassters: Synthetic biology and the next assault on biodiversity and livelihoods. ETC Group. https://www.etcgroup.org/content/new-biomassters (2010). Accessed 26 May 2019.

  68. Ferreira, L.R.A., Otto, R.B., Silva, F.P., De Souza, S.N.M., De Souza, S.S., Junior, O.A.: Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renew. Sustain. Energy Rev. 94, 440–455 (2018)

    Article  Google Scholar 

  69. Canilha, L., Chandel, A.K., Suzane dos Santos Milessi, T., Antunes, F.A.F., Luiz da Costa Freitas, W., das Graças Almeida Felipe, M., da Silva, S.S.: Bioconversion of Sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology 2012, 989572 (2012).

  70. Medina, J.D.C., Woiciechowski, A.L., Zandona Filho, A., Brar, S.K., Júnior, A.I.M., Soccol, C.R.: Energetic and economic analysis of ethanol, xylitol and lignin production using oil palm empty fruit bunches from a Brazilian factory. Journal of cleaner production 195, 44–55 (2018).

  71. Loh, S.K.: The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manage. 141, 285–298 (2017)

    Article  Google Scholar 

  72. Ahmad, F.B., Zhang, Z., Doherty, W.O.S., O’Hara, I.M.: The prospect of microbial oil production and applications from oil palm. Biochem. Eng. J. 14, 9–23 (2019a)

    Article  Google Scholar 

  73. Raman, J.K., Gnansounou, E.: Ethanol and lignin production from Brazilian empty fruit bunch biomass. Biores. Technol. 172, 241–248 (2014)

    Article  Google Scholar 

  74. Castro, R.C., Ferreira, I.S., Roberto, I.C., Mussatto, S.I.: Isolation and physicochemical characterization of different lignin streams generated during the second-generation ethanol production process. International Journal of Biological Macromolecules 129 (2019).

  75. Fageria, N.K., Wander, A.E., Silva, S.C.: Rice (Oryza sativa) cultivation in Brazil. Indian J Agron. 59(3), 350–358 (2014)

    Google Scholar 

  76. Da Rosa, M.P., Beck, P.H., Müller, D.G., Moreira, J.B., da Silva, J S., Durigon, A.M.M.: Extraction of organosolv lignin from rice husk under reflux conditions. Biological and Chemical Research, 87–98 (2017).

  77. Bonassa, G., Schneider, L.T., Canever, V.B., Cremonez, P.A., Frigo, E.P., Dieter, J., Teleken, J.G.: Scenarios and prospects of solid biofuel use in Brazil. Renew. Sustain. Energy Rev. 82, 2365–2378 (2018)

    Article  Google Scholar 

  78. ITTO.: Biennial review statistic. International Tropical Timber Organization.: https://www.itto.int/biennal_review/?mode=searchdata (2017). Accessed 21 May 2019.

  79. Santana, M.A.E., Okino, E.Y.A.: Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung 61(5), 469–477 (2007)

    Article  Google Scholar 

  80. Lourençato, L.F., Bernardes, M.C., Buch, A.C., Silva-Filho, E.V.: Lignin phenols in the paleoenvironmental reconstruction of high mountain peatlands from Atlantic Rainforest. SE-Brazil. Catena 172, 509–515 (2019)

    Article  Google Scholar 

  81. Brazil, O.A.V., Vilanova-Neta, J.L., Silva, N.O., Vieira, I.M.M., Lima, A.S., Ruzene, D.S., Silva, D.P., Figueiredo, R.T.: Integral use of lignocellulosic residues from different sunflower accessions: analysis of the production potential for biofuels. Journal of Cleaner Production 221, 430–438 (2019)

    Article  Google Scholar 

  82. Da Cruz Filho, I.J., da Silva Barros, B.R., de Souza Aguiar, L.M., Navarro, C.D.C., Ruas, J.S., de Lorena, V.M.B., de Moraes Rocha, G.J., Vercesi, A.E., de Melo, C.M.L., Maior, A.M.S.: Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. International Journal of Biological Macromolecules 123, 1331–1339 (2019).

  83. Dasappa, S.: Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy for Sustainable Development 15(3), 203–213 (2011)

    Article  Google Scholar 

  84. Karekezi, S., Kithyoma, W.: Renewable energy in Africa: prospects and limits. The Workshop for African Energy Experts on Operationalizing the NEPAD Energy Initiative. http://sustainabledevelopment.un.org/content/documents/nepadkarekezi.pdf (2003). Accessed 21 May 2019.

  85. FAO, ATIBT, ITTO.: Toward a development strategy for the wood processing industry in the Congo Basin. http://www.fao.org/documents/card/en/c/da238f00-0fe5-48cf-b740-5a3dae1c0bc9/ (2013). Food and Agriculture Organization of the United Nations. Accessed 22 May 2019.

  86. Megevand, C., Mosnier, A., Hourticq, J., Sanders, K., Doetinchem, N., Streck, C.: Deforestation trends in the Congo Basin: reconciling economic growth and forest protection. The World Bank, Washington, D.C. http://documents.worldbank.org/curated/en/175211468257358269/Deforestation-trends-in-the-Congo-Basin-reconciling-economic-growth-and-forest-protection (2013). Accessed 22 May 2019.

  87. EIA.: Palm oil development in the Congo basin: opportunity versus injustice. Environmental Investigation Agency, Washington, D.C. https://eia-global.org/reports/palm-oil-development-in-the-congo-basin (2014). Accessed 22 May 2019.

  88. Ogunwusi, A.A.: African Research Review: The Forest Industry in Nigeria. International Multidisciplinary Journal 6(4), 191–205 (2012)

    Google Scholar 

  89. Oluwadare, A.O., Anguruwa, G.T., Sotannde, O.A.: Characterization of energy value of lignin extracted from mill wood residues of gmelina arborea and tectona grandis. J. For. Sci. Env. 1, 14–20 (2016)

    Google Scholar 

  90. Ezeonu, C.S., Ejikeme, C., Ezeonu, N.C., Eboatu, A.N.: Biomass Constituents and Physicochemical Properties of Some Tropical Softwoods. AASCIT Journal of Materials 3(2), 5–13 (2017)

    Google Scholar 

  91. Joshua, J.A., Ahiekpor, J.C., Kuye, A.: Nigerian hardwood (Nesogordonia papaverifera) sawdust characterization: Proximate analysis, cellulose and lignin contents. Lignocellulose 5(1), 50–58 (2016)

    Google Scholar 

  92. Ndukwe, N.A., Okiei, W.O., Alo, B.I.: Correlates of the yield of chemical pulp, lignin and the extractive materials of tropical hardwoods. Afr. J. Agric. Res. 7(40), 5518–5524 (2012)

    Google Scholar 

  93. Iye, E.L., Bilsborrow, P.E.: Assessment of the availability of agricultural residues on a zonal basis for medium-to large-scale bioenergy production in Nigeria. Biomass Bioenerg. 48, 66–74 (2013)

    Article  Google Scholar 

  94. FAO.: FAOSTAT. (2017). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC (2019). Accessed 21 May 2019.

  95. Surroop, D., Raghoo, P.: Energy landscape in Mauritius. Renew. Sustain. Energy Rev. 73, 688–694 (2017)

    Article  Google Scholar 

  96. Khoodaruth, A., Oree, V., Elahee, M.K., Clark, W.W., II.: Exploring options for a 100% renewable energy system in Mauritius by 2050. Utilities Policy 44, 38–49 (2017)

    Article  Google Scholar 

  97. Bundhoo, Z.M.: Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential. Renew. Sustain. Energy Rev. 82, 2029–2038 (2018)

    Article  Google Scholar 

  98. Frenken, K.: Irrigation in Southern and Eastern Asia in figures - AQUASTAT Survey-2011. Food and Agriculture Organization of the United Nations, Rome (2012)

    Google Scholar 

  99. International Trade Administration (ITA). [Online]. https://www.trade.gov (2019). Accessed 22 May 2019.

  100. Iskandar, M.J., Baharum, A., Anuar, F.A., Othaman, R.: Palm Oil industry in South East Asia and the effluent treatment technology-A review. Environmental Technology & Innovation 9, 169–185 (2018)

    Article  Google Scholar 

  101. Mukherjee, I., Sovacool, B.K.: Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sustain. Energy Rev. 37, 1–12 (2014)

    Article  Google Scholar 

  102. Gan, D.K.W., Loy, A.C.M., Chin, B.L.F., Yusup, S.: An In-Situ Thermogravimetric Study of Pyrolysis of Rice Hull with Alkali Catalyst of CaCO3. IOP Conference Series: Materials Science and Engineering 458(1), 012085 (2018)

    Article  Google Scholar 

  103. Loy, A.C.M., Yusup, S., Lam, M.K., Chin, B.L.F., Shahbaz, M., Yamamoto, A., Acda, M.N.: The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Convers. Manage. 165, 541–554 (2018)

    Article  Google Scholar 

  104. Gordobil, O., Moriana, R., Zhang, L., Labidi, J., Sevastyanova, O.: Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind. Crops Prod. 83, 155–165 (2016)

    Article  Google Scholar 

  105. Brazil, T.R., Baldan, M.R., Massi, M., Rezende, M.C.: Structural behavior of coal obtained from Kraft lignin at different carbonizing rates. Materials Today: Proceedings 4(11), 11617–11623 (2017)

    Google Scholar 

  106. Dehne, L., Babarro, C.V., Saake, B., Schwarz, K.U.: Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind. Crops Prod. 86, 320–328 (2016)

    Article  Google Scholar 

  107. Sugano-Segura, A.T.R., Tavares, L.B., Rizzi, J.G.F., Rosa, D.S., Salvadori, M.C., dos Santos, D.J.: Mechanical and thermal properties of electron beam-irradiated polypropylene reinforced with Kraft lignin. Radiat. Phys. Chem. 139, 5–10 (2017)

    Article  Google Scholar 

  108. Tavares, L.B., Ito, N.M., Salvadori, M.C., dos Santos, D.J., Rosa, D.S.: PBAT/kraft lignin blend in flexible laminated food packaging: Peeling resistance and thermal degradability. Polym. Testing 67, 169–176 (2018)

    Article  Google Scholar 

  109. Souza, J.R., Jr., Araujo, J.R., Archanjo, B.S., Simão, R.A.: Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Prog. Org. Coat. 128, 82–89 (2019)

    Article  Google Scholar 

  110. Moreira, P.H.S.S., de Oliveira Freitas, J.C., Braga, R.M., Araújo, R.M., de Souza, M.A.F.: Production of carboxymethyl lignin from sugar cane bagasse: A cement retarder additive for oilwell application. Industrial Crops and Products 116, 144–149 (2018).

  111. Batista, K.B., Padilha, R.P.L., Castro, T.O., Silva, C.F.S.C., Araújo, M.F.A.S., Leite, L.F.M., Pasa, V.M.D., Lins, V.F.C.: High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind. Crops Prod. 111, 107–116 (2018)

    Article  Google Scholar 

  112. Suzano: Pulp & paper production capacity. [Online]. http://ir.suzano.com.br/the-company/production-capacity (2018). Accessed 28 February 2020.

  113. Huang, Y., Liu, H., Yuan, H., Zhan, H., Zhuang, X., Yuan, S., Yin, X., Wu, C.: Relevance between chemical structure and pyrolysis behavior of palm kernel shell lignin. Sci. Total Environ. 633, 785–795 (2018)

    Article  Google Scholar 

  114. Tang, P.L., Hassan, O., Maskat, M.Y., Badri, K.: Production of monomeric aromatic compounds from oil palm empty fruit bunch fiber lignin by chemical and enzymatic methods. Biomed. Res. Int. 2015(3), 1–14 (2015)

    Google Scholar 

  115. Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J., Sulaiman, O.: Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int. J. Biol. Macromol. 132, 1304–1317 (2019)

    Article  Google Scholar 

  116. Hashin, H., Ho, W.S.: Renewable energy policies and initiatives for a sustainable energy future in Malaysia. Renew. Sustain. Energy Rev. 15(9), 4780–4787 (2011)

    Article  Google Scholar 

  117. How, B.S., Ngan, S.L., Hong, B.H., Lam, H.L., Ng, W.P.Q., Yusup, S., Ghani, W.A.W.A.K., Kansha, Y., Chan, Y.H., Cheah, K.W., Shahbaz, M., Singh, H.K.G., Yusuf, N.R., Shuhaili, A.F.A., Rambli, J.: An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges. Renewable and Sustainable Energy Reviews 113, 1–19 (2019).

  118. Mekhilef, S., Saidur, R., Safari, A., Mustaffa, W.E.S.B.: Biomass energy in Malaysia: Current state and prospects. Renew. Sustain. Energy Rev. 15(7), 3360–3370 (2011)

    Article  Google Scholar 

  119. SEDA.: Other related fiscal incentives. [Online]. https://www.seda.gov.my/policies/other-related-fiscal-incentives/ (n.d.). Accessed 6 April 2020.

  120. Green Tech Malaysia.: Introduction of Green Technology Financing Scheme 2.0 (GTFS 2.0). [Online]. https://www.gtfs.my/news/introduction-green-technology-financing-scheme-20-gtfs-20 (n.d.). Accessed 6 April 2020.

  121. Solarvest.: Tax incentives for green technology in Malaysia. [Online]. https://solarvest.my/2019/07/01/tax-incentives-green-technology-malaysia/ (2019). Accessed 6 April 2020.

  122. Demirbas, M.F.: Biorefineries for biofuel upgrading: a critical review. Appl. Energy 86, S151–S161 (2009)

    Article  Google Scholar 

  123. Ahmad, F.B., Zhang, Z., Doherty, W.O.S., O’Hara, I.M.: The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renew. Sustain. Energy Rev. 109, 386–411 (2019b)

    Article  Google Scholar 

  124. Aristizábal, V.: Integrated production of different types of bioenergy from oil palm through biorefinery concept. Waste and Biomass Valorization 7(4), 737–745 (2016)

    Article  Google Scholar 

  125. Kasivisvanathan, H., Ng, R.T., Tay, D.H., Ng, D.K.: Fuzzy optimisation for retrofitting a palm oil mill into a sustainable palm oil-based integrated biorefinery. Chem. Eng. J. 200, 694–709 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding from the Minister of Higher Education, Malaysia under HiCoE grant (Cost centre: 015MA0-052) and ASEAN Science, Techology and Innovation Fund (ASTIF) (Cost centre: 015ME0-058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Yusup.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H.Y., Yusup, S., Loy, A.C.M. et al. Review on Conversion of Lignin Waste into Value-Added Resources in Tropical Countries. Waste Biomass Valor 12, 5285–5302 (2021). https://doi.org/10.1007/s12649-020-01307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01307-8

Keywords

Navigation