Skip to main content

A Review on the Valorization of Biorefinery Based Waste Lignin: Exploratory Potential Market Approach

  • Conference paper
  • First Online:
Advances in Chemical, Bio and Environmental Engineering (CHEMBIOEN 2021)

Abstract

The world is facing difficulties to make a bridge between energy production and demand due to the diminishing of fossil fuel reserves. Energy resources are limited and unevenly distributed across the globe. Because of waste to wealth, the lignin from industries may play as a metamorphic gamester in biorefineries to enhance the life cycle assessment as well as to meet the ever-increasing global demand for myriad products. From the perspective of lignin valorization, the production of valuable chemicals, different extraction techniques, structures, global market potential, and SWOT analysis will be spotted and reviewed. Markets that are growing lignin-specified biorefinery are expected from 874.3 USD in 2020 to 1537.1 million USD by the end of 2026. Despite the availability of bountiful lignin as an aromatic substrate, its recalcitrant nature restricts the easy and economical production of valuable products. This review study also aims to understand the latest market trends, strategies, and challenges of lignin and its products globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaty M, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2(1):3

    Article  PubMed Central  CAS  Google Scholar 

  • Abdullah B, Muhammad SAFS, Mahmood NAN (2017) Production of biofuel via hydrogenation of lignin from biomass. In: Ravanchi MT (ed) New advances in hydrogenation processes, pp 289–305

    Google Scholar 

  • Adam GA (1998) Lignin-based surfactants. US Patent. US2015/0158898 A1

    Google Scholar 

  • Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  • Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  • Agrwal A, Kaushik A, Biswas S (2014) Derivatives and applications of lignin—an insight. Scitech J 1–07:30–36

    Google Scholar 

  • Ahvazi B, Cloutier E, Wojciechowicz O, Ngo TD (2016) Lignin profiling: a guide for selecting appropriate lignins as precursors in biomaterials development. ACS Sustain Chem Eng 4(10):5090–5105

    Article  CAS  Google Scholar 

  • Alvarado V, Manrique E (2010) Enhanced oil recovery: an update review. Energies 3(9):1529–1575

    Article  Google Scholar 

  • Alwadani N, Fatehi P (2018) Synthetic and lignin-based surfactants: challenges and opportunities. Carbon Resour Convers 1:126–138

    Article  CAS  Google Scholar 

  • Alzagameem A, Khaldi-Hansen BE, Büchner D, Larkins M, Kamm B, Witzleben S, Schulze M (2018) Lignocellulosic biomass as source for lignin-based environmentally benign antioxidants. Molecules 23:2664

    Article  PubMed Central  CAS  Google Scholar 

  • Andrade MF, Colodette JL (2014) Dissolving pulp production from sugar cane bagasse. Ind Crop Prod 52:58–64

    Article  CAS  Google Scholar 

  • Anheden M, Uhlin A, Wolf J, Hedberg M, Berg R, Ankner T, Berglin N, Schenck A, Larsson AL, Guimaraes M, Fiskerud M, Andersson S (2017) Value chain for production of bio-oil from kraft lignin for use as bio-jet fuel, NWBC 2017, Stockholm, 28–30 Mar

    Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sc 7(2):163–173

    CAS  Google Scholar 

  • Appleby AJ (1994) Fuel cells and hydrogen fuel. Int Z Hydrogen Energy 19(2):175–180

    Article  CAS  Google Scholar 

  • Araújo JDP, Grande CA, Rodrigues AE (2009) Structured packed bubble column reactor for continuous production of vanillin from kraft lignin oxidation. Catal Today 147:S330–S335

    Google Scholar 

  • Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol 99:308–318

    Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2012) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  • Balagurumurthy B, Ohri RSP, Prakash A, Bhaskar T (2015) Thermochemical Biorefinery. In: Bhaskar T, Pandey A (edn) Advances in thermochemical conversion of biomass—introduction, pp 157–174

    Google Scholar 

  • Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energ Source Part A 649–659

    Google Scholar 

  • Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energ Proc 128:504–511

    Article  Google Scholar 

  • Barakat A, de Vries H, Rouau X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373

    Article  CAS  PubMed  Google Scholar 

  • Barta K, Warner GR, Beach ES, Anastas PT (2014) Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem 16:191–196

    Article  CAS  Google Scholar 

  • Bhat AH, Dasan YK, Khan I (2015) Extraction of lignin from biomass for biodiesel production. Agr biom potential mater, pp 155–179

    Google Scholar 

  • Bhutto AW, Harijan K, Qureshi K, Bazmi AA, Bahadori A (2015) Perspectives for the production of ethanol from lignocellulosic feedstock—a case study. J Clean Prod 95:184–193

    Article  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Bjørsvik H-R, Liguori L (2002) Organic processes to pharmaceutical chemicals based on fine chemicals from lignosulfonates. Org Proc Res Dev 6(3):279–290

    Article  CAS  Google Scholar 

  • Boomika A, Naveen MA, Richard JD, Mythili A, Vetturayasudharsanan R (2017) Experimental study on partial replacement of bitumen with lignin and plastic. SSRG Int J Civ Eng Special Issue 9–14

    Google Scholar 

  • Bourzac K (2015) Inner workings: paving with plants. Proc Natl Acad Sci USA 112(38):11743–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruijnincx P, Weckhuysen B, Gruter G-J, Engelen-Smeets E (2016) Lignin valorisation: the importance of a full value chain approach. Utrecht Univ 22

    Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259

    Article  CAS  Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol

    Google Scholar 

  • Casas A, Oliet M, Alonso MV, Rodríguez F (2012) Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep Purif Technol 97:115–122

    Article  CAS  Google Scholar 

  • Chatterjee S, Saito T (2018) Lignin-derived advanced carbon materials. Chem Sus Chem 8:23

    Google Scholar 

  • Che C, Vagin M, Wijeratne K, Zhao D, Warczak M, Jonsson MP, Crispin X (2018) Conducting polymer electrocatalysts for proton-coupled electron transfer reactions: toward organic fuel cells with forest fuels. Adv Sustain Syst 1800021

    Google Scholar 

  • Chen H (2015) Lignocellulose biorefinery engineering, CB22 3HJ. Woodhead Publishing Limited is an imprint of Elsevier, Cambridge

    Google Scholar 

  • Chen S, Wen Z, Liao W, Liu C, Kincaid RL, Harrison JH, Stevens DJ (2005) Studies into using manure in a biorefinery concept. Appl Biochem Biotechnol 121–124:999–1015

    PubMed  Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose. Theory Pract

    Google Scholar 

  • Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes, biomass now—sustainable growth and use. Miodrag Darko Matovic, IntechOpen

    Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51(7):1412–1421

    Article  CAS  Google Scholar 

  • Cook et al (1991) Organosolv Lignin modified phenolic resins and method for their preparation. United States Patent, 5010156

    Google Scholar 

  • Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromol 12:3928–3935

    Article  CAS  Google Scholar 

  • da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87:1276–1292

    Google Scholar 

  • Dale BE, Ong RG (2012) Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol Prog 28(4):893–898

    Article  CAS  PubMed  Google Scholar 

  • Dastpak A, Yliniemi K, Monteiro MCO, Höhn S, Virtanen S, Lundström M, Wilson BP (2018) From waste to valuable resource: lignin as a sustainable anti-corrosion coating. Coatings 8:454

    Google Scholar 

  • Dehne L, Vila, Babarro C, Saake B, Schwarz KU (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind Crop Prod 86:320–328

    Google Scholar 

  • Demirbas A (2009) Biorefineries: current activities and future developments. Energ Convers Manage 50(11):2782–2801

    Article  CAS  Google Scholar 

  • Dhiman G (2019) Lignin biorefinery: an effective biomass conversion to value added product. TT Consultants patent

    Google Scholar 

  • Duan D, Lei H, Wang Y, Ruan R, Liu Y, Ding L, Zhang Y, Liu L (2019) Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis. J Clean Prod 231:331–340

    Article  CAS  Google Scholar 

  • Van Dyne, DL., Blasé, MG., Clements, LD., A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. p. 114–123. In: J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VA (1999).

    Google Scholar 

  • El Mansouri N-E, Yuan QL, Huang F (2011) Study of chemical modification of alkaline lignin by the glyoxylation reaction. Mater Sci 6(4):4523–4536

    Google Scholar 

  • Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4(1):35–46

    Article  CAS  Google Scholar 

  • Farooz N, Sofi QF, Mir MS (2018) Lignin as partial replacement for bitumen. In: Conference on recent innovations in emerging technology and science, 6–7 Apr 2018. ISSN: 2320-2882 by JB Institute of Technology, Dehradun & IJCRT

    Google Scholar 

  • Faustino H, Gil N, Baptista C, Duarte AP (2010) Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15:9308–9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Wang H, Lin H, Zheng Y (2019) Selective production of guaiacol from black liquor: effect of solvents. Carbon Resour Convers

    Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energ Fuel 4:1727–1737

    Article  CAS  Google Scholar 

  • Fragues C, Mathis A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Engg Tech 9–2:127–136

    Article  Google Scholar 

  • Frost S (2012) High-value opportunities for lignin: Unlocking its potential. Frost and Sullivan, Santa Clara. Available at: http://www.frost.com/sublib/display-marketinsight-top.do?id¼269017995

  • Gabov K, Hemming J, Fardim P (2017) Sugarcane bagasse valorization by fractionation using a water-based hydrotropic process. Ind Crop Prod 108:495–504

    Article  CAS  Google Scholar 

  • Gan C, Wang H, Zhao Z, Yin B (2014) Sugar-based ester quaternary ammonium compounds and their surfactant properties. J Surf Deterg 17(3):465–470

    Article  CAS  Google Scholar 

  • Ganie K, Manan MA, Ibrahim A, Idris AK (2019) An experimental approach to formulate lignin-based surfactant for enhanced oil recovery. Int J Chem Eng 6

    Google Scholar 

  • Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48(2014):92–101

    Article  CAS  Google Scholar 

  • Ghatak HR (2011) Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sustain Energ Rev 15:4042–4052

    Article  CAS  Google Scholar 

  • Gibas I, Janik H (2010) Review: synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4:4

    Article  Google Scholar 

  • Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266

    Google Scholar 

  • Guo G, Li S, Wang L, Ren S, Fang G (2013) Separation and characterization of lignin from bio-ethanol production residue. Bioresour Technol 135:738–741

    Article  CAS  PubMed  Google Scholar 

  • Gurel E, Merba TAT (2018) SWOT analysis: a theoretical review. J Int Social Res 10:51

    Google Scholar 

  • Haro JC, Magagnin L, Turri S, Griffini G (2019) Lignin-based anticorrosion coatings for the protection of aluminum surfaces. ACS Sustain Chem Eng 7:6213–6222

    Article  CAS  Google Scholar 

  • Harper SHT, Lynch JM (1981) The chemical components and decomposition of wheat straw leaves, internodes and nodes. J Sci Food Agric 32–11

    Google Scholar 

  • Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878

    Article  CAS  Google Scholar 

  • Hemmilä V, Trischler J, Sandberg D (2013) Lignin—an adhesive raw material of the future or waste of research energy? In: Brischke C, Meyer L (eds) Proceedings of 9th meeting of the Northern European network for wood science and engineering (WSE), Hannover, Germany, 11–12 Sept, pp 98–103

    Google Scholar 

  • Higuchi T, Itu Y, Shimada M, Kawamura I (1967) Chemical properties of milled wood lignin of grasses. Phytochem 6:1551–1556

    Article  CAS  Google Scholar 

  • Hinman ND, Schell DJ, Riley J, Bergeron PW, Walter PJ (1992) Preliminary estimate of the cost of ethanol production for ssf technology. Appl Biochem Biotechnol 34–35(1):639–649

    Article  Google Scholar 

  • Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass volume ii—results of screening for potential candidates from biorefinery lignin. Pacific Northwest Natl Lab II(October):87

    Google Scholar 

  • Hongzhang C (2015) Lignocellulose biorefinery engineering, principles and applications. eBook ISBN: 9780081001455

    Google Scholar 

  • Hu J, Zhang Q, Lee DJ (2017) Kraft lignin biorefinery: a proposal. Bioresour Technol 8–10

    Google Scholar 

  • Huang J, Fu S, Gan L (2019) Lignin chemicals and their applications. In: Huang J, Fu S, Gan L (eds) Lignin chemistry and their applications. Chemical Industry Press. Elsevier, pp 79–134

    Google Scholar 

  • Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2(3):149–156

    Google Scholar 

  • Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in the valorization of lignocellulosic materials by biotechnology: an overview. Bio Resources 8(2):3157–3176

    Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  • Jeenpadiphat S, Mongkolpichayarak I, Tungasmita DN (2016) Catechol production from lignin by Al-doped mesoporous silica catalytic cracking. J Anal Appl Pyrol 121:318–328

    Article  CAS  Google Scholar 

  • Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66

    Article  CAS  Google Scholar 

  • Jin Y, Ruan X, Cheng X, Lü Q (2011) Liquefaction of lignin by polyethylene glycol and glycerol. Bioresour Technol 102(3):3581–3583

    Article  CAS  PubMed  Google Scholar 

  • Johansson AJ, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13:45–65

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C (2012) Renewable fibers and bio-based materials for packaging applications-a review of recent developments. Bio Resources 7:2506–2552

    Google Scholar 

  • Jong ED, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A et al (eds) Industrial biorefineries and white biotechnology, pp 3–33

    Google Scholar 

  • Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–3292

    Article  CAS  Google Scholar 

  • Kalami S, Arefmanesh M, Master E, Nejad M (2017) Replacing 100% of phenol in phenolic adhesive formulations with lignin. J Appl Polym Sci

    Google Scholar 

  • Kaleinert TN (1975) Ethanol-water delignification of sizable pieces of wood disintegration into stringlike fiber bundles. Holzforschung 29:108–110

    Google Scholar 

  • Kamm B (2014) Biorefineries: their scenarios and challenges. Pure Appl Chem 86(5):821–831

    Article  CAS  Google Scholar 

  • Kanosh AL, Essam SA, Zeinat AN (1999) Biodegradation and utilization of bagasse with Trichoderma reesie. Polym Degrad 63:273–278

    Google Scholar 

  • Karaaslan MA, Kadla JF, Ko FK (2016) Lignin-based aerogels. Lignin in polymer composites, pp 67–93

    Google Scholar 

  • Khan TA, Lee J, Kim HJ (2019) Lignin-based adhesives and coatings. In: Arriffin A (ed) Lignocellulose for future bioeconomy, Elsevier, UK, pp 153–206

    Google Scholar 

  • Kloekhorst A, Shen Y, Yie Y, Fang M, Heeres HJ (2015) Catalytic hydrodeoxygenation and hydrocracking of Alcell® lignin in alcohol/formic acid mixtures using a Ru/C catalyst. Biomass Bioenerg 80:147–161

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641

    Article  CAS  Google Scholar 

  • Larrañeta E, Imizcoz M, Toh JX, Irwin J, Ripolin A, Perminova A, Dominguez-Robles J, Rodriguez A, Donnelly RF (2018) Synthesis and characterization of lignin hydrogels for potential applications as drug eluting antimicrobial coatings for medical materials. ACS Sustain Chem Eng

    Google Scholar 

  • Lawther JM, Sun RC, Banks WB (1997) Isolation and characterization of organosolv lignin under alkaline condition from wheat straw. Int J Polym Anal Charact 3(2):159–175

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Lindorfer H, Frauz B (2015) Biogas biorefineries. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 271–294

    Google Scholar 

  • Liu G, Bao J (2017) Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production. Bioresour Technol

    Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to non-renewable materials. J Polym Environ 10:39

    Article  CAS  Google Scholar 

  • Lu Y, Lu Y-C, Hu H-Q, Xie F-J, Wei X-Y, Fan X (2017) Structural characterization of lignin and its degradation products with spectroscopic methods. J Spectrosc

    Google Scholar 

  • Ludmila H, Michal J, Andrea S, Slovak HA (2015) Lignin, potential products and their market value. Wood Res 60(6):973–986

    Google Scholar 

  • Lumadue MR, Cannon FS, Brown NR (2012) Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 97:869–875

    Article  CAS  Google Scholar 

  • Luo L, Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock-technical, economic and environmental considerations. Bioresour Technol 101:5023–5032

    Article  CAS  PubMed  Google Scholar 

  • Luo A-O (2017) Chemicals from lignin, Encyclopedia of sustainable technologies, 1st edn., pp 573–585

    Google Scholar 

  • Luo C, Du L, Wu W, Xu H, Zhang G, Li S, Wang C, Lu Z, Deng Y (2018) Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain Chem Eng

    Google Scholar 

  • Lynd LR., Wyman C, College MLD, Hampshire N, Johnson D, Proforma RL (2005) Strategic biorefinery analysis: analysis of biorefineries. National Renewable Energy Laboratory (NREL), pp 403–465

    Google Scholar 

  • Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chem Sus Chem 7:1–29

    CAS  Google Scholar 

  • Mackendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  Google Scholar 

  • Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 160–114

    Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114

    Article  CAS  Google Scholar 

  • Manko D, Zdziennicka A (2015) Sugar-based surfactants as alternative to synthetic ones. Ann UMCS, Chem 70(1):161–168

    Google Scholar 

  • Marcilly C (2003) Present status and future trends in catalysis for refining and petrochemicals. J Catal 216(1–2):47–62

    Article  CAS  Google Scholar 

  • Market Watch, https://www.marketwatch.com/press-release/lignin-and-lignin-based-products-market-2020-with-top-countries-data-overview-cost-structure-analysis-growth-opportunities-and-forecast-to-2026-2020-02-04. Last accessed 4 Feb 2021

  • Mathew AK, Abraham A, Mallapureddy KK, Sukumaran RK (2018) Waste biorefinery: potential and perspectives. In: ed. Lignocellulosic biorefinery wastes, or resources. Elsevier

    Google Scholar 

  • Mathiasson A, Kubát DG (1994) Lignin as binder in particle boards using high frequency heating. Holz Als Roh-Und Werkstoff 52:9–18

    Article  CAS  Google Scholar 

  • Maximize, Market research, https://www.maximizemarketresearch.com/market-report/lignin-market/13321/. Last accessed 13 Feb 2021

  • McGEE JK, April GC (1982) Chemicals from renewable resources: hemicellulose behavior during organosolv delignification of southern yellow pine. Chem Eng Comm 19:1–3

    Article  Google Scholar 

  • Meng L-Y, Ma M-G, Ji X-X (2019) Preparation of lignin-based carbon materials and its application as a sorbent. Mater 12:1111

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    Article  CAS  PubMed  Google Scholar 

  • Minu K, Kurian, Jiby K, Kishore VVN (2012) Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw. Biomass Bioenerg 39(SI):210–217

    Google Scholar 

  • Mohan D, Pittman CU, Steele P (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuels 20:848–889

    Article  CAS  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci 108(20):8351–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada J, Johnny A, Tamayo, Carlos A, Cardona A (2014) Integrating first, second and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 118:126–140

    Google Scholar 

  • Mordor Intelligence (2021) Kraft lignin products market—growth, trends, and forecast (2020–2025)

    Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993

    Article  CAS  PubMed  Google Scholar 

  • Mousavioun P, Doherty WOS (2010) Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crops Prod 31:52–58

    Google Scholar 

  • Mussatto SI, Dragone GM (2016) Biomass pretreatment, biorefineries and potential products for a bioeconomy development. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery, 1st edn., pp 1–22

    Google Scholar 

  • Naae DG, Whittington EL, Ledoux AW (1988) Surfactants from lignin. United States Patent. 4,739,040

    Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA et al (2013) Characterization of north american lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677

    Article  CAS  Google Scholar 

  • Nirmale TC, Kale BB, Varma AJ (2017) A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery. Int J Biol Macromol

    Google Scholar 

  • Nitos C, Rova U, Christakopoulos P (2018) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 11:50

    Article  CAS  Google Scholar 

  • Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Pant D (2017) Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol 241:1101–1117

    Google Scholar 

  • Nsimba RY, Mullen CA, West NM, Boateng AA (2012) Structure−property characteristics of pyrolytic lignins derived from fast pyrolysis of a lignin rich biomass extract. ACS Sustain Chem Eng 1:260–267

    Article  CAS  Google Scholar 

  • Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos Part A Appl Sci Manuf 37:1879–1883

    Article  CAS  Google Scholar 

  • Olsson M (2015) Preparation of lignin die. Experimental and statistical study of the biodiesel preparation process from a pulp- and paper industry residual product. Ph.d. Thesis (Karlstads universitet 651 88 Karlstad), pp 1–41

    Google Scholar 

  • Ozdenkçi K, Blasio C, Muddassar HR, Melin K, Oinas P, Koskinen J, Järvinen M (2017) A novel biorefinery integration concept for lignocellulosic biomass. Energ Convers Manage 149:974–987

    Article  CAS  Google Scholar 

  • Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjoerring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energ Rev 43:244–263

    Google Scholar 

  • Pereira A, Hoeger IC, Ferrer A, Rencoret J, Rio JCD, Kurus K, Rahikainen J, Kellock M, Gutierrez A, Rojas OJ (2017) lignin films from spruce, eucalyptus, and wheat straw studied with electroacoustic and optical sensors: effect of composition and electrostatic screening on enzyme binding. Biomacromolecules 18(4):1322–1332

    Google Scholar 

  • Perez J, Muñoz-Dorado J, De La Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  CAS  PubMed  Google Scholar 

  • Pinto PCR, Borges da Silva EA, Rodrigues AE (2012) In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer Berlin Heidelberg, Berlin, pp 381–420

    Google Scholar 

  • Pizzi A (2006) Recent development in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour, Conser Recycl 50(1):1–39

    Article  Google Scholar 

  • Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte AR, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluid 105:1–8

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843–1246843

    Article  PubMed  CAS  Google Scholar 

  • Rana M, Islam MN, Agarwal A, Taki G, Park S-J, Dong S, Jo Y-T, Park J-H (2018) Production of phenol-rich monomers from kraft lignin hydrothermolysates in basic-subcritical water over MoO3/SBA-15 catalyst. Energ Fuel 32(11):11564–11575

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Redman LV (1923) New applications of phenol resins in the chemical and allied industries. Ind Eng Chem 677

    Google Scholar 

  • Restolho JA, Prates A, Pinho MN, Afonso MD (2009) Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biomass Bioenerg 33:1558–1566

    Article  CAS  Google Scholar 

  • Rocha GJM, Martin C, da Silva VFN, Gomez EO, Goncalves AR (2012) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour Technol 111:447–452

    Google Scholar 

  • Rojas OJ, Stubenrauch C, Lucia L, Habibi Y (2009) Interfacial properties of sugarbased surfactants. In: Hayes D, Kitamoto D, Solaiman D, Ashby R (eds) Bio-based surfactants and detergents: synthesis, properties and applications, AOCS Press, Urbana, pp 457–480

    Google Scholar 

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Bio-based Adhesives

    Google Scholar 

  • Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42:160–166

    Article  CAS  PubMed  Google Scholar 

  • Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2016) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Article  CAS  Google Scholar 

  • Sarkar S, Adhikari B (2000) Lignin-modified phenolic resin: synthesis optimization, adhesive strength, and thermal stability. J Adhes Sci Technol 14(9):1179–1193

    Article  CAS  Google Scholar 

  • Schuler J, Hornung U, Kruse A, Dahmen N, Sauer J (2017) Hydrothermal liquefaction of lignin. J Biomater Nano 8:96–108

    Google Scholar 

  • Shen DK, Gu S, Luo KH, Wang SR, Fang MX (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Biores Technol 101(15):6136–6146

    Article  CAS  Google Scholar 

  • Shewa WA, Lalman JA, Chaganti SR (2016) Heath, DD,: Electricity production from lignin photocatalytic degradation byproducts. Energy 111:774–784

    Article  CAS  Google Scholar 

  • Shim E (2010) Coating and laminating processes and techniques for textiles. In: Smith WC (ed) Smart textile coatings and laminates. Woodhead Publishing Limited, pp 10–41

    Google Scholar 

  • Shimzu M, Yoshihito W, Hideo O, Takahi H, Katsuomi T (1992) Synthesis of alkyl substituted p-benzoquinones from the corresponding phenols using molecular oxygen catalyzed by copper(II) chloride-amine hydrochloride systems. Bull Chem Soc Jpn 65:1522–1526

    Article  Google Scholar 

  • Singh S, Ghatak HR (2017) Vanillin formation by electrooxidation of lignin on stainless steel anode: kinetics and byproducts. J Wood Chem Technol 37(6):407–422

    Google Scholar 

  • Slaghek TM, van Vliet D, Giezen C, Haaksman IK (2017) US patent application no. 15/125, 268

    Google Scholar 

  • Smook GA (2002) Kraft pulping. In: Smook GA (ed) Handbook for pulp and paper technologists. Angus Wilde Publications, Vancouver, pp 75–85

    Google Scholar 

  • Soderholm P, Lundmark R (2009) The development of forest-based biorefineries: implications for market behavior and policy. Forest Prod J 59:1–2

    Google Scholar 

  • Souto F, Calado V, Pereira Jr N (2018) Lignin-based carbon fiber: a current overview. Mater Res Express

    Google Scholar 

  • Speight, JG.: Synthetic fuels handbook: Properties, process and performance. The McGraw-Hill Companies, inc. (2008).

    Google Scholar 

  • Sreekrishnan MATR (2001) Aquatic toxicity from pulp and peper mill effluenes a review. Adv Environ Res 5(2):175–196

    Google Scholar 

  • Stanzione III, JF, Sadler JM, La Scala JJ, Reno KH, Wool RP (2012) Vanillin-based resin for use in composite applications. Green Chem 14(8):2346

    Google Scholar 

  • Stevens ES, Klamczynski A, Glenn GM (2010) Starch-lignin foams. Express Polym Lett 4:311–320

    Article  CAS  Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27(2):202–207

    Google Scholar 

  • Suhas PJM, Carrott MML, Carrott R (2007) Lignin from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312

    Google Scholar 

  • Sun D, Lu T, Xiao F, Zhu X, Sun G (2017) Formulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residues. J Clean Prod 161:1203–1214

    Article  CAS  Google Scholar 

  • Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Ind Crop Prod 31:534–541

    Article  CAS  Google Scholar 

  • Technavio (2017) Global lignin products market 2017–21. Retrieved from: https://www.technavio.com/report/global-lignin-products-market?tnplus

  • Tejado A, Peňa C, Labidi J, Echeverria JM, Mondragon I (2007) Physico chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98(8):1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci

    Google Scholar 

  • Thakur S, Chaudhary J, Kumar V, Thakur VK (2017) Progress in pectin based hydrogels for water purification: trends and challenges. J Environ Manage 238:210–223. https://www.sciencedirect.com/science/journal/03014797/238/supp/C

  • Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82(1):1–15

    Article  CAS  Google Scholar 

  • Thomsen MH (2005) Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol 68(5):598–606

    Article  CAS  PubMed  Google Scholar 

  • Timothy WJ (2012) Technological, commercial, organizational and social uncertainties of a novel process for vanillin production from lignin. Simon Fraser University, Canada

    Google Scholar 

  • Transparency: Market Research, https://www.transparencymarketresearch.com/lignin-based-products-market.html

  • Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Songf H, Kim K-H, Kwon EE, Jeon YJ (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644

    Article  CAS  PubMed  Google Scholar 

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695

    Article  CAS  PubMed  Google Scholar 

  • Vengal JC, Srikumar M (2005) Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Trends Biomater Artif Organs 18:237–241

    Google Scholar 

  • Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Tech 35:245–255

    Article  CAS  Google Scholar 

  • Vinardell MP, Ugartondo V, Mitjans M (2008) Potential applications of antioxidant lignins from different sources. Ind Crop Prod 27:220–223

    Article  CAS  Google Scholar 

  • Visthal A, Kraslawski A (2011) Challenges in industrial application of technical lignins. BioResources 6(3):3547–3568

    Article  Google Scholar 

  • van Vliet D, Slaghek T, Giezen C, Haaksman I (2016) Lignin as a green alternative for bitumen. In: Proceeding of the 6th eurasphalt and eurobitume congress. Prague, Czech Republic, 1–3 June

    Google Scholar 

  • Wang G, Chen H (2016) Enhanced lignin extraction process from steam exploded corn stalk. Sep Purif Technol 157:93–101

    Article  CAS  Google Scholar 

  • Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2014) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1):26–32

    Article  CAS  Google Scholar 

  • Weetall HH, Forsyth BD, Hertl WA (1985) A direct fuel cell for the production of electricity from lignin. Hertl Biotechnol Bioeng 27:972–979

    Google Scholar 

  • Windsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26:379–386

    Article  CAS  Google Scholar 

  • Wising U, Stuart P (2006) Identifying the Canadian forest biorefinery. Pulp Pap Canada 107(6):25–30

    CAS  Google Scholar 

  • Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. Biotechnology Center for Fuels and Chemicals, NREL/TP-580-26157

    Google Scholar 

  • Xie S, Li Q, Karki P, Zhou P, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem Eng 2017(5):2817–2823

    Article  CAS  Google Scholar 

  • Xu C, Ferdosian F (2017) Conversion of lignin into bio-based chemicals and materials. Springer

    Google Scholar 

  • Xuan TD, Sakanishi K, Nakagoshi N, Fujimoto S (2012) Biorefinery: concepts, current status, and development trends. Int J Biom Renew 1–8

    Google Scholar 

  • Yang BS, Kang K-Y (2017) Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. J Korean Phys Soc 71:478–482

    Article  CAS  Google Scholar 

  • Yearla SR, Padmsree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11(4):289–302

    Article  CAS  Google Scholar 

  • Yoshikawa T, Yagi T, Shinohara S, Fukunaga T, Nakasaka Y, Tago T, Masuda T (2013) Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Process Technol 108:69–75

    Article  CAS  Google Scholar 

  • Zhang QZ, Cai WM (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenerg 32(12):1130–2113

    Article  CAS  Google Scholar 

  • Zhang M, Xu Y, Li K (2007) Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J Appl Poly Sci. 106:630–636

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Q, Long J, Xu Y, Wang T, Ma L, Li Y (2014) Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides. BioResources 9:3347–3360

    Google Scholar 

  • Zhao X, Zhu YZ (2016) Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures. Chem Sus Chem 9:197–207

    Article  CAS  Google Scholar 

  • Zoia L, King AWT, Argyropoulos S (2011) Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. J Agric Food Chem 59:829–838

    Google Scholar 

Download references

Conflict of Interest

The Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Roy Ghatak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, K., Ghatak, H.R., Ahuja, S.M. (2022). A Review on the Valorization of Biorefinery Based Waste Lignin: Exploratory Potential Market Approach. In: Ratan, J.K., Sahu, D., Pandhare, N.N., Bhavanam, A. (eds) Advances in Chemical, Bio and Environmental Engineering. CHEMBIOEN 2021. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-96554-9_19

Download citation

Publish with us

Policies and ethics