Skip to main content

Advertisement

Log in

Mitigation of CO2, CH4 and N2O from Acidic Clayey Soil Amended with Fertilizer Pellets Based on Alkaline Organic Residues

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Alkaline organic residues, such as wood ash (WA), deinking paper sludge (DPS), and mixed paper sludge (MPS) could have a significant potential for mitigating greenhouse gases (GHG) when they are used for land application. The DPS was mixed and then granulated with MPS, WA and/or composted DPS to form pellets. A 56-d incubation study was carried out to investigate the effect of alkaline organic residue pellets on: (1) the biological and chemical properties of acidic clayey soil; (2) on carbon dioxide (CO2), on methane (CH4), and nitrous oxide (N2O) soil emissions. The experimental design included eight different treatments: unfertilized control (Control), fertilized control with mineral nitrogen (controlF), and six pelleted alkaline organic residue amendments (T1–T6) combined with mineral nitrogen fertilizer. The six amendments were: (T1) 100% DPS; (T2) 100% composted [50% poultry manure and 50% T1]; (T3) 50%WA + 50% T1; (T4) 50% WA + 50% T2; (T5) 50%T2 + 30%WA + 20% MPS; (T6) 50% T1 + 30%WA + 20% MPS. The results showed that alkaline residues significantly increased soil pH, the concentration of water-extractable organic carbon, and water-extractable nitrogen. Alkaline treatments had a positive effect on soil microbial activity. The highest mitigation efficiency of cumulative CO2 was obtained with T4, which released 10% less CO2 than other treatments. No significant effect on cumulative CH4 emissions was observed. Total cumulative N2O emissions were reduced by 37% with T5. Our study also showed that organic pellets based on alkaline residues improved the soil properties and can play a role in the mitigation of GHG in acidic clayey soil. Therefore, the co-application of alkaline organic residue pellets with chemical fertilizer might be considered as a sustainable approach in agriculture.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Abbreviations

DPS:

Deinking paper sludge

MPS:

Mixed paper sludge

WA:

Wood ash

FDA:

Fluorescein diacetate hydrolysis

GHG:

Greenhouse gas

WEOC:

Water-extractable organic carbon

WEN:

Water-extractable nitrogen

NP:

Neutralizing power

CCE:

Carbonate equivalent

OA:

Organic amendment

PD:

Pellets density

fr PZ:

Gleyed Humo-Ferric Podzol

References

  1. Recyc-Québec, Bilan 2015 de la gestion des matières résiduelles au Québec (2016). https://www.recycquebec.gouv.qc.ca/sites/default/files/documents/bilan-gmr-2015.pdf

  2. Amberg, H.R.: Sludge dewatering and disposal in the pulp and paper industry. J. Water Pollut. Control Feder. 962–969 (1984)

  3. Belkheir, Z.: Recherche d’un consortium microbien pour composter des boues papetières secondaires. Université du Québec Institut national de la recherche scientifique, Québec (1996)

    Google Scholar 

  4. Sylvis. The biosolids emissions assessment model (BEAM): a method for determining greenhouse gas emissions from Canadian biosolids management practices: Canadian Council of Ministers of the Environment (2009)

  5. Faubert, P., Barnabé, S., Bouchard, S., Côté, R., Villeneuve, C.: Pulp and paper mill sludge management practices: what are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 108, 107–133 (2016)

    Article  Google Scholar 

  6. Faubert, P., Bélisle, C.L., Bertrand, N., Bouchard, S., Chantigny, M.H., Paré, M.C., Rochette, P., Ziadi, N., Villeneuve, C.: Land application of pulp and paper mill sludge may reduce greenhouse gas emissions compared to landfilling. Resour. Conserv. Recycl. 150, 104415 (2019)

    Article  Google Scholar 

  7. Likon, M., Polonca, T.: Recent advances in paper mill sludge management. In: Industrial waste, pp. 73–90 (2012)

  8. NCASI, International Council of Forests and Paper Associations by the National Council for Air and Stream Improvement, Inc. Calculation Tools for Estimating Greenhouse Gas Emissions from Pulp and Paper Mills. Version 1.1. (2005)

  9. Environnement et Changement climatique Canada Rapport d'inventaire national de 1990–2018: Sources et puits de gaz à effet de serre au Canada (2020)

  10. Chantigny, M.H., Prévost, D., Angers, D.A., Simard, R.R., Chalifour, F.P.: Nitrous oxide production in soils cropped to corn with varying N fertilization. Can. J. Soil Sci. 78, 589–596 (1998)

    Article  Google Scholar 

  11. Janzen, H.H., Desjardins, R.L., Asselin, J.M.R., Grace, B.: The health of our air: toward sustainable agriculture in Canada. Research Branch, Agriculture and Agri-Food Canada (1998)

  12. Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Masera, O.: Agriculture, forestry and other land use (AFOLU), in Climate change 2014: mitigation of climate change. In: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 811–922 (2014)

  13. Tian, G., Chiu, C.Y., Franzluebbers, A.J., Oladeji, O.O., Granato, T.C., Cox, A.E.: Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois. Appl. Soil. Ecol. 85, 86–93 (2015)

    Article  Google Scholar 

  14. Abdi, D., Ziadi, N., Shi, Y., Gagnon, B., Lalande, R., Hamel, C.: Residual effects of paper mill biosolids and liming materials on soil microbial biomass and community structure. Can. J. Soil Sci. 97, 188–199 (2016)

    Google Scholar 

  15. Marouani, E., Kolsi Benzina, N., Ziadi, N., Bouslimi, B., Abida, K., Tlijani, H., Koubaa, A.: CO2 Emission and change in the fertility parameters of a calcareous soil following annual applications of deinking paper sludge (The Case of Tunisia). Agronomy 10, 956 (2020)

    Article  Google Scholar 

  16. Royer-Tardif, S., Whalen, J., Rivest, D.: Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions? Sci. Total Environ. 663, 537–547 (2019)

    Article  Google Scholar 

  17. Mozaffari, M., Hays, H.C.: Effect of a newly developed pelleted papermill biosolids on crop and soil. J. Agric. Chem. Environ. 9, 1 (2019)

    Google Scholar 

  18. Camberato, J.J., Gagnon, B., Angers, D.A., Chantigny, M.H., Pan, W.L.: Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 86, 641–653 (2006)

    Article  Google Scholar 

  19. Rashid, M., Barry, D., Goss, M.: Paper mill biosolids application to agricultural lands: benefits and environmental concerns with special reference to situation in Canada. Soil Environ. 25, 85–98 (2006)

    Google Scholar 

  20. Larney, F.J., Angers, D.A.: The role of organic amendments in soil reclamation: a review. Can. J. Soil Sci. 92, 19–38 (2012)

    Article  Google Scholar 

  21. Hébert, M.: Guide sur le recyclage des matières résiduelles fertilisantes: critères de référence et normes réglementaires. Éditions Québec (2015). https://www.environnement.gouv.qc.ca/matieres/mat_res/fertilisantes/critere/guide-mrf.pdf

  22. Marouani, E., Benzina, N.K., Ziadi, N., Bouslimi, B., Abouda, A., Koubaa, A.: Deinking sludge compost stability and maturity assessment using Fourier transform infrared spectroscopy and thermal analysis. Waste Manag. Res. 37, 1043–1057 (2019)

    Article  Google Scholar 

  23. Saarsalmi, A., Mälkönen, E.: Forest fertilization research in Finland: a literature review. Scand. J. For. Res. 16, 514–535 (2001)

    Article  Google Scholar 

  24. Nunes, J.R., Cabral, F., López-Piñeiro, A.: Short-term effects on soil properties and wheat production from secondary paper sludge application on two Mediterranean agricultural soils. Bioresour. Technol. 99, 4935–4942 (2008)

    Article  Google Scholar 

  25. Koubaa, A., Migneault, S.: Potentiel des cendres issues de la combustion de la biomasse forestière pour la production de granules pour la fertilisation sylvicole. Rapport, Université du Québec en Abitibi Témiscamingue, p. 27 (2013)

  26. Chantigny, M.H., Pelster, D.E., Perron, M.H., Rochette, P., Angers, D.A., Parent, L.É., Ziadi, N.: Nitrous oxide emissions from clayey soils amended with paper sludges and biosolids of separated pig slurry. J. Environ. Qual. 42, 30–39 (2013)

    Article  Google Scholar 

  27. Luce, M.S., Grant, C.A., Ziadi, N., Zebarth, B.J., O’Donovan, J.T., Blackshaw, R.E., May, W.E.: Preceding crops and nitrogen fertilization influence soil nitrogen cycling in no-till canola and wheat cropping systems. Field Crops Res. 191, 20–32 (2016)

    Article  Google Scholar 

  28. Legrain, X., Berding, F., Dondeyne, S.; Schad, P., Chapelle, J. : Base de référence mondiale pour les ressources en sols 2014. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Organisation des Nations Unies pour l'alimentation et l'agriculture (2016). https://www.fao.org/3/i3794fr/I3794FR.pdf. Accessed 26 June 2020.

  29. Belhadef, W.: Developement de granules améliorés à base de bouleau blanc et de graines de canola. MS thesis, université du Québec en Abitibi-Témiscamingue (2016). https://depositum.uqat.ca/id/eprint/670/1/Belhadef,%20Williams.pdf.

  30. Nielsen, N.P.K., Holm, J.K., Felby, C.: Effect of fiber orientation on compression and frictional properties of sawdust particles in fuel pellet production. Energy Fuels 23, 3211–3216 (2009)

    Article  Google Scholar 

  31. Maynard, D., Kalra, Y., Crumbaugh, J.: Nitrate and exchangeable ammonium nitrogen. Soil Sampling Methods Anal. 1 (1993)

  32. Lévesque, V., Rochette, P., Hogue, R., Jeanne, T., Ziadi, N., Chantigny, M.H., Antoun, H.: Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications. Biol Fertil. Soils (2020). https://doi.org/10.1007/s00374-020-01470-z

    Article  Google Scholar 

  33. Guo, Q.H., Cui, H.X., Lei, J., Kang, M., Wang, X.L., Li, Y.N., Wang, H.T.: Enhanced optical angular momentum in cylinder waveguides with negative-index metamaterials. J. Opt. 14, 045703 (2012)

    Article  Google Scholar 

  34. Linn, D.M., Doran, J.W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils 1. Soil Sci. Soc. Am. J. 48, 1267–1272 (1984)

    Article  Google Scholar 

  35. Chevallier, T., Hmaidi, K., Kouakoua, E., Bernoux, M., Gallali, T., Toucet, J., Barthès, B.G.: Physical protection of soil carbon in macroaggregates does not reduce the temperature dependence of soil CO2 emissions. J. Plant Nutr. Soil Sci. 178, 592–600 (2015)

    Article  Google Scholar 

  36. CRAAQ, Reference guide for crop fertilization. Centre de Référence en Agriculture et Agroalimentaire du Québec, pp. 139–186 (2010)

  37. Hendershot, W., Lalande, H., Duquette, M.: Soil reaction and exchangeable acidity. Soil Sampling Methods Anal. 2 (1993)

  38. Mehlich, A.: Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984)

    Article  Google Scholar 

  39. Gagnon, B., Ziadi, N.: Papermill biosolids and alkaline residuals affect crop yield and soil properties over nine years of continuous application. Can. J. Soil Sci. 92, 917–930 (2012)

    Article  Google Scholar 

  40. Adam, G., Duncan, H.: Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33, 943–951 (2001)

    Article  Google Scholar 

  41. Rochette, P., Worth, D.E., Lemke, R.L., McConkey, B.G., Pennock, D.J., Wagner-Riddle, C., Desjardins, R.J.: Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Can. J. Soil Sci. 88, 641–654 (2008)

    Article  Google Scholar 

  42. Rochette, P., Bertrand, N., Carter, M., Gregorich, E.G.: Soil-Surface Gas Emissions. Soil Sampling and Methods of Analysis, pp. 851–861. CRC Press, Boca Raton (2008)

    Google Scholar 

  43. SAS Institute Inc: Base SAS 9.4 Procedures Guide: Statistical Procedures, 5th edn. SAS Institute, Cary (2015)

    Google Scholar 

  44. Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., Oliver, S.: SAS for Mixed Models. SAS Institute Inc, Cary (2006)

    Google Scholar 

  45. Arous, S.: Traitements thermochimiques des copeaux de bois pour la production des granules énergétiques. MS thesis, université du Québec en Abitibi-Témiscamingue (2019). https://depositum.uqat.ca/id/eprint/847/1/safa-arous_memoire.pdf

  46. Chantigny, M.H., Angers, D.A., Beauchamp, C.J.: Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can. J. Soil Sci. 80, 99–105 (2000)

    Article  Google Scholar 

  47. Masunga, R.H., Uzokwe, V.N., Mlay, P.D., Odeh, I., Singh, A., Buchan, D., De Neve, S.: Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil. Ecol. 101, 185–193 (2016)

    Article  Google Scholar 

  48. Gagnon, B., Ziadi, N., Rochette, P., Chantigny, M.H., Angers, D.A.: Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci. Soc. Am. J. 75, 595–604 (2011)

    Article  Google Scholar 

  49. Kuzyakov, Y.: Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010)

    Article  Google Scholar 

  50. Bouwman, A.: Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosyst. 46, 53–70 (1996)

    Article  Google Scholar 

  51. Sun, S., Liu, J., Chang, S.X.: Temperature sensitivity of soil carbon and nitrogen mineralization: impacts of nitrogen species and land use type. Plant Soil 372, 597–608 (2013)

    Article  Google Scholar 

  52. Zhong, H., Wang, Z., Liu, Z., Liu, Y., Yu, M., Zeng, G.: Degradation of hexadecane by Pseudomonas aeruginosa with the mediation of surfactants: relation between hexadecane solubilization and bioavailability. Int. Biodeterior. Biodegrad. 141–145 (2016)

  53. Fierro, A., Angers, D.A., Beauchamp, C.J.: Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper de-inking sludge. J. Appl. Ecol. 36, 244–253 (1999)

    Article  Google Scholar 

  54. Fierro, A., Angers, D.A., Beauchamp, C.J.: Decomposition of paper de-inking sludge in a sandpit minesoil during its revegetation. Soil Biol. Biochem. 32, 143–150 (2000)

    Article  Google Scholar 

  55. Wu, T., Liu, X., Liu, Y., Cheng, M., Liu, Z., Zeng, G., He, Q.: Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord. Chem. Rev. 403, 213097 (2020)

    Article  Google Scholar 

  56. Liu, Z., Jiang, Y., Liu, X., Zeng, G., Shao, B., Liu, Y., He, X.: Silver chromate modified sulfur doped graphitic carbon nitride microrod composites with enhanced visible-light photoactivity towards organic pollutants degradation. Compos. B Eng. 173, 106918 (2019)

    Article  Google Scholar 

  57. Guemiza, K., Coudert, L., Mercier, G., Tran, L.H., Metahni, S., Blais, J.F., Mercier, G.: Removal of potential toxic inorganic and organic compounds from contaminated soils by alkaline leaching with surfactant. Soil Sedim. Contamin. 28, 513–527 (2019)

    Article  Google Scholar 

  58. Reynier, N., Blais, J.F., Mercier, G., Besner, S.: Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant. Environ. Technol. 35, 177–186 (2014). https://doi.org/10.1080/09593330.2013.822005

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Normand Bertrand, Bernard Gagnon, Sylvie Côté and Claude Lévesque from Quebec City Research and Development Center Agriculture and Agri-food Canada (AAC) for their technical support and constructive discussions. We thank Sameh Hannachi from the Centre Technique de l'Industrie du Bois et de l'Ameublement (CETIBA), Tunisia for funds acquisition, Tunisie Ouate for logistics and materials support and Gilles Villeneuve from Université du Québec en Abitibi Témiscamingue (UQAT) for technical assistance.

Funding

The authors acknowledge the financial support received from the Canada Research Chair Program (Grant No. 557752), MITACS (Grant Nos. IT11796, IT08227), CETIBA, Tunisie Ouate, CRIBIQ (Grant No. 2015-029-C18), and the Ministry of Industry of Tunisia, the University of Carthage, Tunisia, and Agriculture Agri-food Canada (Quebec City).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Koubaa.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 4, 5, 6, 7 and 8.

Table 4 Trace element content of alkaline organic residue pellets (n = 4) in comparison with the limits of Bureau de normalisation du Québec (BNQ); BNQ 0419–090 and 0419–200, which cover liming residues and composts; (T1) 100% DPS; (T2) 100% composted [50% poultry manure (PM) and 50% T1]; (T3) 50%WA + 50% T1; (T4) 50% WA + 50% T2; (T5) 50%T2 + 30%WA + 20% MPS; (T6) 50% T1 + 30%WA + 20% MPS
Table 5 Effect of alkaline organic residue pellets (n = 4) on macronutrients, micronutrients and heavy metals at 28 and 56 days in a clayey acidic soil expressed in mg/Kg
Table 6 Effect of alkaline organic residue pellets (n = 4) on pH, N–NO3, exchangeable N–NH4, C/N ratio, WEOC, WEN, FDA hydrolysis, P and K at 28 and 56 days of incubation
Table 7 Pearson correlation coefficients between soil properties and total cumulative GHG emissions at day 56 of incubation total cumulative GHG emissions
Table 8 Granulation parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marouani, E., Ziadi, N., Lévesque, V. et al. Mitigation of CO2, CH4 and N2O from Acidic Clayey Soil Amended with Fertilizer Pellets Based on Alkaline Organic Residues. Waste Biomass Valor 12, 3813–3827 (2021). https://doi.org/10.1007/s12649-020-01276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01276-y

Keywords

Navigation