Skip to main content

Advertisement

Log in

Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In a 338-d microcosm incubation experiment, greenhouse gas emissions (GHG) and bacterial diversity were studied in a clayey soil amended with 5% (w/w) biochar in the presence or absence of 4% (w/w) peat- and shrimp-based compost used as an additional C source. Two maple biochars produced at 400 °C (M400) or 700 °C (M700) and pine chips produced at 700 °C (P700) were tested. In comparison with soil supplemented or not with compost, the addition of any biochar resulted in lower total cumulative N2O emission (90% to 97%). The low porosity of M400 and M700 increased soil anaerobic conditions and resulted in higher total cumulative CH4 emission compared to the other soil treatments. In addition, the lowest total cumulative CO2 emission was observed with M700, probably due to its low-priming effect on native soil C decomposition. In all treatments, compost addition had the highest impact on both soil bacterial richness and community composition, particularly on bacteria of the class Anaerolineae. At day 338, results showed that modification of soil properties by maple biochars reduced bacterial diversity and induced shifts in the taxonomic composition of their community. In fact, heterotrophic bacteria involved in denitrification, such as genera Haliangium, Hyphomicrobium, Opititus, and Pedomicrobium, increased in abundance in response to the amendment with maple biochars. We conclude that the nature of biochar feedstock can impact soil bacterial diversity by changing soil physicochemical properties, thus influencing C dynamics, porosity, and pH, and by mitigating total cumulative GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abujabhah IS, Doyle R, Bound SA, Bowman JP (2016) The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. J Soils Sediments 16:2211–2222

    CAS  Google Scholar 

  • Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    CAS  Google Scholar 

  • Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410

    CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    CAS  Google Scholar 

  • Brassard P, Godbout S, Palacios JH, Jeanne T, Hogue R, Dubé P, Limousy L, Raghavan V (2018) Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study. Geoderma 327:73–84

    CAS  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    PubMed  PubMed Central  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B 368:20130122

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costellom EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case SDC, McNamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – the role of soil aeration. Soil Biol Biochem 51:125–134

    CAS  Google Scholar 

  • Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    CAS  Google Scholar 

  • Cayuela ML, Sanchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732

    PubMed  PubMed Central  Google Scholar 

  • Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sanchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    CAS  Google Scholar 

  • Chantigny MH, Pelster DE, Perron M-H, Rochette P, Angers DA, Parent L-É, Massé D, Ziadi N (2013) Nitrous oxide emissions from clayey soils amended with paper sludges and biosolids of separated pig slurry. J Environ Qual 42:30–39

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhao Z, Peng Y, Li J, Xiao L, Yang L (2016) Performance of a full-scale modified anaerobic/anoxic/oxic process: high-throughput sequence analysis of its microbial structures and their community functions. Bioresour Technol 220:225–232

    CAS  PubMed  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    CAS  Google Scholar 

  • Cole EJ, Zandvakili OR, Blanchard J, Xing B, Hashemi M, Etemadi F (2019) Investigating responses of soil bacterial community composition to hardwood biochar amendment using high-throughput PCR sequencing. Appl Soil Ecol 136:80–85

    Google Scholar 

  • CRAAQ, Centre de Référence en Agriculture et Agroalimentaire du Québec (2010) Guide de référence en fertilisation, 2nd edn. Quebec City, Quebec

    Google Scholar 

  • Cross A, Sohi S (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    CAS  Google Scholar 

  • Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH dependence of organic matter mineralization in weakly acidic soils. Soil Biol Biochem 30:57–64

    CAS  Google Scholar 

  • Darby I, Xu C-Y, Wallace HM, Joseph S, Pace B, Bai SH (2016) Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Environ Sci Pollut Res 23:11267–11278

    CAS  Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–297

    CAS  PubMed  Google Scholar 

  • Fierer N, Jackson JA, Vilgalysm R, Jackson B, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solution. Science 320:889–892

    CAS  PubMed  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    CAS  Google Scholar 

  • Guo X, Drury CF, Reynolds WD, Yang X, Fan R (2012) Nitrous oxide and carbon dioxide emissions from aerobic and anaerobic incubations: effect of core length. Soil Sci Soc Am J 77:817–829

    Google Scholar 

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55

    CAS  PubMed  Google Scholar 

  • Hangs RD, Ahmed HP, Schoenau JJ (2016) Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils. BioEnergy Res 9:157–171

    CAS  Google Scholar 

  • Harter J, Krause H-M, Schuettle S, Ruser R, Fromme M, Scholten T, Kappler A, Behren S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674

    CAS  PubMed  Google Scholar 

  • Harter J, Guzman-Bustamante I, Kuehfuss S, Ruser R, Well R, Spott O, Kappler A, Behrens S (2016a) Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Sci Rep 6:39574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harter J, Weigold P, El-Hadidi M, Huson DH, Kappler A, Behrens S (2016b) Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci Total Environ 562:379–390

    CAS  PubMed  Google Scholar 

  • He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Bai SH, Wallace H, Xu C (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9:743–755

    CAS  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (2007) Soil reaction and exchangeable acidity. In: Carter M, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 173–178

    Google Scholar 

  • Hernandez M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Wang Y, Liu J, Li J, Xu G, Luo M, Xu C, Ci E, Gao M (2019) Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl Soil Ecol 137:57–68

    Google Scholar 

  • Jäger N, Stange CF, Ludwig B, Flessa H (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments – a laboratory study. Biol Fertil Soils 47:483–494

    Google Scholar 

  • Krause H-M, Hüppi R, Leifeld J, El-Hadidi M, Harter J, Kappler A, Hartmann M, Behrens S, Mäder P, Gattinger A (2018) Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biol Biochem 119:143–151

    CAS  Google Scholar 

  • Lévesque V, Rochette P, Ziadi N, Dorais M, Antoun H (2018) Mitigation of CO2, CH4 and N2O emissions from a fertigated horticultural growing medium amended with biochars and a compost. Appl Soil Ecol 126:129–139

    Google Scholar 

  • Lévesque V, Jeanne T, Dorais M, Ziadi N, Hogue R, Antoun H (2020) Biochars improve tomato and sweet pepper performance and shift bacterial composition in a peat-based growing medium. Appl Soil Ecol 153:103579. https://doi.org/10.1016/j.apsoil.2020.103579

    Article  Google Scholar 

  • Li M, Wang Y, Liu M, Liu Q, Xie Z, Li Z, Uchimiya M, Chen Y (2019) Three-year field observation of biochar-mediated changes in soil organic carbon and microbial activity. J Environ Qual 48:717–726

    CAS  PubMed  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–157

    CAS  PubMed  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou J (2016) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8:392–406

    CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard DG, Kalra YP, Crumbaugh JA (2007) Nitrate and exchangeable ammonium nitrogen. In: Carter M, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 71–80

    Google Scholar 

  • Mcllroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, Nielsen JL (2016) Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol 18:50–64

    Google Scholar 

  • Muhammad N, Dai Z, Xiao K, Meng J, Brookes PC, Liu X, Wang H, Wu J, Xu J (2014) Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226–227:270–278

    Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255

    CAS  Google Scholar 

  • Oren A, Xu X-W (2014) The family Hyphomicrobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th edn. Verlag, Berlin, pp 247–281

    Google Scholar 

  • Rochette P, Bertrand N (2007) Soil-surface gas emissions. In: Carter M, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 851–861

    Google Scholar 

  • Sakamoto K, Oba Y (1994) Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass. Biol Fertil soils 17:39–44

  • Simek M, Jisova L, Hopkins DW (2002) what is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34:1227–1234

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Daniel Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Martin Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    CAS  Google Scholar 

  • St-Luce M, Whalen JK, Ziadi N, Zebarth BJ, Chantigny MH (2014) Labile organic nitrogen transformations in clay and sandy-loam soils amended with 15N-labelled faba bean and wheat residues. Soil Biol Biochem 68:208–218

    CAS  Google Scholar 

  • Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc B 367:1157–1168

    CAS  Google Scholar 

  • Van Zwieten L, Singh BP, Kimber SWL, Murphy DV, Macdonald LM, Rust J, Morris S (2014) An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric Ecosyst Environ 191:53–62

    Google Scholar 

  • Ventura M, Alberti G, Panzacchi P, Vedove GD, Miglietta F, Tonon G (2019) Biochar mineralization and priming effect in a polar short rotation coppice from a 3-year field experiment. Biol Fertil Soils 55:67–78

    CAS  Google Scholar 

  • Voroney RP, Brookes PC, Beyaert RP (2007) Soil microbial biomass C, N, P, and S. In: Carter M, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 637–651

    Google Scholar 

  • Wang N, Chang Z-Z, Xue X-M, Yu J-G, Shi X-X, Ma LQ, Li H-B (2017) Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci Total Environ 581–582:689–696

    PubMed  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    CAS  Google Scholar 

  • Wardle DA, Ghani A (2018) A tale of two theories, a chronosequence and a bioindicator of soil quality. Soil Biol Biochem 121:A3–A7

    CAS  Google Scholar 

  • Wu F, Jia Z, Wang S, Chang SX, Startsev A (2013) Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a chernozemic soil. Biol Fertil Soils 49:555–565

    CAS  Google Scholar 

  • Wu H, Zeng G, Liang J, Chen J, Xu J, Dai J, Li X, Chen M, Xu P, Zhou Y, Li F, Hu L, Wan J (2016) Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl Microbiol Biotechnol 100:8583–8591

    CAS  PubMed  Google Scholar 

  • Wu D, Senbayram M, Zang H, Ugurlar F, Aydemir S, Brüggemann N, Kuzyakov Y, Bol R, Blagodatskaya E (2018) Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl Soil Ecol 129:121–127

    Google Scholar 

  • Wolińska A, Kuźniar A, Zielenkiewicz U, Banach A, Izak D, Stępniewska Z, Błaszczyk M (2017) Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes. Microb Ecol 73:162–176

    PubMed  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    CAS  PubMed  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    CAS  Google Scholar 

  • Yuan H, Zhang Z, Li M, Clough T, Wrage-Mönnig N, Qin S, Ge T, Liao H, Zhou S (2019) Biochar’s role as an electron shuttle for mediating soil N2O emissions. Soil Biol Biochem 133:94–96

    CAS  Google Scholar 

  • Zheng J, Stewart CE, Cotrufo MF (2012) Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J Environ Qual 41:1361–1370

    CAS  PubMed  Google Scholar 

  • Zhou H, Zhang D, Wang P, Liu X, Cheng K, Li L, Zheng J, Zhang X, Zheng J, Crowley D, Van Zwieten L, Pan G (2017) Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis. Agric Ecosyst Environ 239:80–89

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Normand Bertrand, Claude Lévesque, Sylvie Côté, and Mireille Thériault for their help in laboratory analysis and constructive discussions. V. Lévesque was the recipient of a Ph.D. scholarship from the Fonds québécois de la recherche sur la nature et les technologies. This work was supported by the program “Soutien à l’innovation en agroalimentaire, un programme issu de l’accord du cadre Cultivons l’avenir conclu entre le Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec et Agriculture et Agroalimentaire Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Lévesque.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévesque, V., Rochette, P., Hogue, R. et al. Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications. Biol Fertil Soils 56, 907–925 (2020). https://doi.org/10.1007/s00374-020-01470-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01470-z

Keywords

Navigation