Skip to main content
Log in

Contribution of Lignin Peroxidase, Manganese Peroxidase, and Laccase in Lignite Degradation by Mixed White-Rot Fungi

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The catalytic depolymerization of biological enzymes during biological liquefaction of coal is very important. In this study, the effects of medium types, lignite addition, and mixed culture on lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac) secreted by white-rot fungi are investigated. Fifteen strains of white-rot fungi are used for microbial liquefaction of the Zhaotong lignite in Yunnan. The results show that the activities of LiP, MnP, and Lac are highest in the Czapek-Dox medium (DOX), followed by the Sabouraud Maltose Broth (SMB) medium, and are almost zero in the Potato Dextrose Agar (PDA) medium. In the early stage of fungal growth, the medium contains sufficient nutrients, and lignite addition induces an inhibitory effect on extracellular enzyme secretion, whereas in the late growth stage characterized by nutrient deficiency, it exhibits an enhancing effect. For fungi pair combinations, if only single enzyme activity was considered, the positive synergistic effect of Lac in the mixed culture of s.commune and SL203 would be the highest, with the synergistic coefficient of 233.33. While three enzymes were considered, the integrated effects of ZTW07 and SL203 are the highest, with Lac, MnP, and LiP producing synergistic coefficients of 158.795, 1.217, and 1.006, respectively. It can be seen that the mixed culture can greatly improve the enzyme activity of white rot fungi and is one of the effective methods to improve the liquefaction efficiency.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hölker, U., Ludwig, S., Scheel, T., Höfer, M.: Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 52(1), 57–59 (1999)

    Google Scholar 

  2. Hayatsu, R., Winans, R.E., Mcbeth, R.L., Ssott, R.G., Moore, L.P., Studier, M.H.: Lignin-like polymers in coals. Nature 78, 41–43 (1979)

    Google Scholar 

  3. Vamvuka, D., Sfakiotakis, S.: Combustion behaviour of biomass fuels and their blends with lignite. Thermochim. Acta 526(1–2), 192–199 (2011)

    Google Scholar 

  4. Küçük, A., Kadıoğlu, Y., Gülaboğlu, M.Ş.: A study of spontaneous combustion characteristics of a turkish lignite: particle size, moisture of coal, humidity of air. Combust. Flame 133(3), 255–261 (2003)

    Google Scholar 

  5. Wang, J., Fan, W., Li, Y., Xiao, M., Wang, K., Ren, P.: The effect of air staged combustion on NOx emissions in dried lignite combustion. Energy 37(1), 725–736 (2012)

    Google Scholar 

  6. Stefanova, M., Marinov, S.P., Mastral, A.M., Callén, M.S., Garci, T.: Emission of oxygen, sulphur and nitrogen containing heterocyclic polyaromatic compounds from lignite combustion. Fuel Process. Technol. 77–78, 89–94 (2002)

    Google Scholar 

  7. Butuzova, L., Krzton, A., Bazarova, O.: Structure and properties of humic acids obtained from thermo-oxidised brown coal. Fuel 77(6), 581–584 (1998)

    Google Scholar 

  8. Cohen, M.S., Gabriele, P.D.: Degradation of coal by the fungi Polyporus Versicolor and Poria monticola. Appl. Environ. Microbiol. 44(1), 23–27 (1982)

    Google Scholar 

  9. Crawford, D.L., Gupta, R.K.: Influence of cultural parameters on the depolymerization of a soluble lignite coal polymer by Pseudomonas cepacia DLC-07. Resour. Conserv. Recycl. 5(2–3), 245–254 (1991)

    Google Scholar 

  10. Quigley, D., Ward, B., Crawford, D., et al.: Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20–21(1), 753–763 (1989)

    Google Scholar 

  11. Strandbrg, G.W., Lewis, S.N.: Solubilization of coal by an extracellular product from Streptomyces setonii 75Vi2. J. Ind. Microbiol. Biotechnol. 1(6), 371–375 (1987)

    Google Scholar 

  12. Bublitz, F., Gunther, T., Frische, W.: Screening of fungi for the biological modification of hard coal and coal derivatives. Fuel Process. Technol. 40(2-3), 347–354 (1994)

    Google Scholar 

  13. David, Y., Baylon, M.G., Pamidimarri, S.D., Baritugo, K.A., Chae, C.G., Kim, Y.J., Kim, T.W., Kim, M.S., et al.: Screening of microorganisms able to degrade low-rank coal in aerobic conditions: potential coal biosolubilization mediators from coal to biochemicals. Biotechnol. Bioprocess Eng. 22, 178–185 (2017)

    Google Scholar 

  14. Li, J., Liu, X., Yue, Z., et al.: Biodegradation of photo- oxidized lignite and characterization of the products. IOP Conf. Ser. 108, 042122 (2018)

    Google Scholar 

  15. Haider, R., Ghauri, M.A., Akhter, K.: Isolation of coal degrading fungus from drilled core coal sample and effectof prior fungal pretreatment on chemical attributes of extracted humic acid. Geomicrobiol. J. 32(10), 944–953 (2015)

    Google Scholar 

  16. Silva-Stenico, E., Vengadajellum, C.J., Janjua, H.A., Harrison, S.T.L., Burton, S.G., Cowan, D.A.: Degradation of low rank coal by Trichoderma atroviride ES11. J. Indus. Microbiol. Biotechnol. 34(9), 625–631 (2007)

    Google Scholar 

  17. Haider, R., Ghauri, M.A., SanFilipo, J.R., Jones, E.J., Orem, W.H., Tatu, C.A., Akhtar, K., Akhtar, N.: Fungal degradation of coal as a pretreatment for methane production. Fuel 104, 717–725 (2013)

    Google Scholar 

  18. Ralph, J.P., Catcheside, D.E.A.: Transformations of low rank coal by Phanerochaete chrysosporium andother wood-rot fungi. Fuel Process. Technol. 52(1–3), 79–93 (1997)

    Google Scholar 

  19. Tien, M., Kirk, T.K.: Lignin degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 221(4611), 661–663 (1983)

    Google Scholar 

  20. Cohen, M.S., Bowers, W.C., Aronson, H., Gray Jr, E.T.: Cell-free solubilization of coal by Polyporus Versicolor. Appl. Environ. Microbiol. 53(12), 2840–2843 (1987)

    Google Scholar 

  21. Ralph, J.P., Catcheside, D.E.A.: Decolourisation and depolymerisation of solubilised low-rank coal by the white-rot basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 42(4), 536–542 (1994)

    Google Scholar 

  22. Shi, K., Yin, S., Tao, X., Du, Y., He, H., Lv, Z., Xu, N.: Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy. Energy Sources Part A 35(15), 1456–1462 (2013)

    Google Scholar 

  23. Fakoussa, R.M., Hofrichter, M.: Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52(1), 25–40 (1999)

    Google Scholar 

  24. Glenn, J.K., Morgan, M.A., Mayfield, M.B., Kuwahara, M., Gold, M.H.: An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 114(3), 1077–1083 (1983)

    Google Scholar 

  25. Hammel, K.E., Cullen, D.: Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11(3), 349–355 (2008)

    Google Scholar 

  26. Asgher, M., Shah, S.A.H., Ali, M., Legge, R.L.: Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J. Microbiol. Biotechnol. 22(1), 89–93 (2006)

    Google Scholar 

  27. MingTien, T., Kirk, K.: Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161, 238–249 (1988)

    Google Scholar 

  28. Haemmerli, S.D., Leisola, M.S., Sanglard, D., Fiechter, A.: Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J. Biol. Chem. 261, 6900–6903 (1986)

    Google Scholar 

  29. Hammel, K.E., Kalyanaraman, B., Kirk, T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261, 16948–16952 (1986)

    Google Scholar 

  30. Paszczynski, A., Huynh, V.B., Crawford, R.: Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29(1–2), 37–41 (1985)

    Google Scholar 

  31. Brown, J.A., Alic, M., Gold, M.H.: Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J. Bacteriol 173(13), 4101–4106 (1991)

    Google Scholar 

  32. Hofrichter, M.: Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbial. Technol. 30(4), 454–466 (2002)

    Google Scholar 

  33. Hofrichter, M., Scheibner, K., Bublitz, F., Schneegaß, I., Ziegenhagen, D., Martens, R., Fritsche, W.: Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53(2), 161–166 (1999)

    Google Scholar 

  34. Hikorokuro, Y.: Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J. Chem. Soc. Trans. 43, 472–486 (1883)

    Google Scholar 

  35. Claus, H.: Laccases: structure, reactions, distribution. Micron 35(1–2), 93–96 (2004)

    Google Scholar 

  36. Hoegger, P.J., Kilaru, S., James, T.Y., Thachker, J.R., Kues, U.: Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 273(10), 2308–2326 (2006)

    Google Scholar 

  37. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., Mougin, C.: Crystal structure of four-copper laccase complexed with an arylamide: insights into substrate recognition and correlation with kinetics. Biochemistry 41(23), 7325–7333 (2002)

    Google Scholar 

  38. Rodrı’guez, E., Pickard, M.A., Vazquez-Duhalt, R.: Industrial dye decolorization by Laccases from Ligninolytic Fungi. Curr. Mirobiol. 38, 27–32 (1999)

    Google Scholar 

  39. Dittmer, J.K., Patel, N.J., Dhawale, S.W., Dhawale, S.S.: Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol. Lett. 149(1), 65–70 (1997)

    Google Scholar 

  40. Pointek, K., Antorini, M., Choinowski, T.: Crystal structure of a laccase from the fungus Trametes versicolor at 190 Å resolution containing a full complement of coppers. J. Biol. Chem. 277(40), 37663–37669 (2002)

    Google Scholar 

  41. Kau, L.S., SpiraSolomon, D.J., Penner-Hahn, J.E., Hodgson, K.O., Solomon, E.I.: X-ray absorption edge determination of the oxidation stateand coordination number of copper: application to the Type3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 109, 6433–6442 (1987)

    Google Scholar 

  42. Morpirgo, L., Calabrese, L., Desideri, A., Rotilio, G.: Dependence on freezing of the geometry and redox potential of Type 1 and Type 2 copper sites of Japanese-lacquer-tree (Rhus vernic(fera) laccase. Biochem. J. 193, 639–642 (1982)

    Google Scholar 

  43. Witayakran, S., Ragauskas, A.J.: Synthetic applications of laccase in green chemistry. Adv. Synth. Catal. 351, 1187–1209 (2009)

    Google Scholar 

  44. Vasconcelos, A.F.D., Barbosa, A.M., Dekker, R.F.H., Scarminio, I.S., Rezende, M.I.: Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem. 35(10), 1131–1138 (2000)

    Google Scholar 

  45. Arora, D.S., Chander, M., KaurGill, P.: Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegradation 50(2), 115–120 (2001)

    Google Scholar 

  46. Erkurt, E.A., Ünyayar, A., Kumbur, H.: Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem. 42(10), 1429–1435 (2007)

    Google Scholar 

  47. Stajić, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S.P., Nevo, E., Vukojević, J.: Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microbial. Technol. 38(1–2), 65–73 (2006)

    Google Scholar 

  48. Archibald, F.S.: A new assay for lignin type peroxidases employing the dye Azure B. Appl. Environ. Microbiol. 58(9), 3110–3116 (1992)

    Google Scholar 

  49. Miller, R., Kuglin, J., Gallagher, G., Flurkey, W.H.: A spectrophotometric assay for laccase using o-tolidine. J. Food Biochem. 21(1), 445–459 (1997)

    Google Scholar 

  50. Fenice, M., Sermanni, G.G., Federici, F., D'Annibale, A.: Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J. Biotechnol. 100(1), 77–85 (2003)

    Google Scholar 

  51. Gokcay, C.F., Kolankaya, N., Dilek, F.B.: Microbial solubilization of lignites. Fuel 80, 1421–1433 (2001)

    Google Scholar 

  52. Bumpus, J.A., Senko, J., Lynd, G., Morgan, R., Sturm, K., Stimpson, J., Roe, S.: Biomimetic solubilization ofa low-rank coal: implications for use in methane production. Fuel Energy 12, 664–671 (1998)

    Google Scholar 

  53. Woodward, C.A., Kaufman, E.N.: Enzymatic catalysis in organic solvents: Polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene. Biotechnol. Bioeng. 52(3), 423–428 (1996)

    Google Scholar 

  54. Tao, X., Pan, L., Shi, K., Chen, H., Yin, S., Luo, Z.: Bio-solubilization of Chinese lignite I: extra-cellular protein analysis. Min. Sci. Technol. (China) 19(3), 358–362 (2009)

    Google Scholar 

  55. Zouari, H., Labat, M., Sayadi, S.: Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresour. Technol. 84(2), 145–150 (2002)

    Google Scholar 

  56. Gumul, D., Ziobro, R., Noga, M., Sabat, R.: Characterisation of five potato cultivars according to their nutritional and pro-health components. Acta Sci. Polym. Technol. Aliment. 10(1), 77–81 (2011)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51504134), Key Supported Discipline of Guizhou Provence (Qian Xuewei He Zi ZDXK[2016]24), 2011 Collaborative Innovation Center of Guizhou Province (QianJiaohexietongchuangxinzi [2016]02), Guizhou Key Laboratory of Coal Clean Utilization (qiankehepingtairencai [2020]2001), and Liupanshui Key Laboratory of thermoelectric and electrode materials(52020-2020-0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyi Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Liu, Y., Chen, P. et al. Contribution of Lignin Peroxidase, Manganese Peroxidase, and Laccase in Lignite Degradation by Mixed White-Rot Fungi. Waste Biomass Valor 12, 3753–3763 (2021). https://doi.org/10.1007/s12649-020-01275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01275-z

Keywords

Navigation