Skip to main content

Advertisement

Log in

Status and Development of Sludge Incineration in China

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sewage sludge disposal and utilization have become an ever-increasing challenge due to the rapid development of urbanization and strict environmental protection requirements in China. Incineration is becoming one of the most important strategies for sludge disposal due to the large volume reduction rate, destruction of contaminations, and energy recovery. A general introduction to sludge disposal status in China will be summarized, including sludge production, characteristics of sludge, and existing disposal methods. Second, current research and developments regarding the whole process of sludge incineration will be introduced, which consist of the pretreatment of sewage sludge (e.g., thickening, conditioning, dewatering, and drying), incineration (e.g., co-combustion and mono-combustion), and pollutant control (e.g., gaseous pollutant, heavy metals, and fly ash). Different kinds of incinerators performing sludge mono- or co-combustion are thoroughly introduced and analyzed. Finally, several typical commercial applications of sludge incineration, including the key operation parameters, will be discussed in detail to illustrate the development of the sludge incineration technique in China.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Deng, W., Li, X., Yan, J., Wang, F., Chi, Y., Cen, K.: Moisture distribution in sludges based on different testing methods. J. Environ. Sci. 23, 875–880 (2011). https://doi.org/10.1016/S1001-0742(10)60518-9

    Article  Google Scholar 

  2. Werther, J., Ogada, T.: Sewage sludge combustion. Prog. Energy Combust. Sci. 25, 55–116 (1999). https://doi.org/10.1016/S0360-1285(98)00020-3

    Article  Google Scholar 

  3. Magdziarz, A., Werle, S.: Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manage 34, 174–179 (2014). https://doi.org/10.1016/j.wasman.2013.10.033

    Article  Google Scholar 

  4. Dong, B., Liu, X., Dai, L., Dai, X.: Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour. Technol. 131, 152–158 (2013). https://doi.org/10.1016/j.biortech.2012.12.112

    Article  Google Scholar 

  5. Yang, G., Fan, M., Zhang, G.: Emerging contaminants in surface waters in China - a short review. Environ. Res. Lett. (2014). https://doi.org/10.1088/1748-9326/9/7/074018

    Article  Google Scholar 

  6. Wang, Q., Cheng, S., Huang, J., Qiao, Y.: Comparative experimental study of odor gases control methods during sewage sludge drying process. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal Huazhong Univ. Sci. Technol. 45, 73–77 (2017)

    Google Scholar 

  7. He, C., Li, X.Z., Sharma, V.K., Li, S.Y.: Elimination of sludge odor by oxidizing sulfur-containing compounds with ferrate(VI). Environ. Sci. Technol. 43, 5890–5895 (2009). https://doi.org/10.1021/es900397y

    Article  Google Scholar 

  8. Dincer, F., Muezzinoglu, A.: Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas. J. Environ. Sci. Healtht A 43, 1569–1574 (2008). https://doi.org/10.1080/10934520802293776

    Article  Google Scholar 

  9. Dong, H., Jiang, X., Lv, G., Chi, Y., Yan, J.: Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler. Waste Manage 46, 227–323 (2015)

    Article  Google Scholar 

  10. Li, C., Xie, F., Ma, Y., Cai, T., Li, H., Huang, Z., Yuan, G.: Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching. J. Hazard. Mater. 178, 823–833 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.013

    Article  Google Scholar 

  11. Yang, G., Zhang, G., Wang, H.: Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60–73 (2015). https://doi.org/10.1016/j.watres.2015.04.002

    Article  Google Scholar 

  12. Zhang, Q., Hu, J., Lee, D.J., Chang, Y., Lee, Y.J.: Sludge treatment: current research trends. Bioresour. Technol. 243, 1159–1172 (2017). https://doi.org/10.1016/j.biortech.2017.07.070

    Article  Google Scholar 

  13. Zhan, T.L., Zhan, X., Lin, W., Luo, X., Chen, Y.: Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chengdu, China. Eng. Geol. 170, 24–32 (2014). https://doi.org/10.1016/j.enggeo.2013.12.006

    Article  Google Scholar 

  14. Song, U., Lee, E.J.: Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour. Conserv. Recycl. 54, 1109–1116 (2010). https://doi.org/10.1016/j.resconrec.2010.03.005

    Article  Google Scholar 

  15. Fang, W., Delapp, R.C., Kosson, D.S., van der Sloot, H.A., Liu, J.: Release of heavy metals during long-term land application of sewage sludge compost: percolation leaching tests with repeated additions of compost. Chemosphere 169, 271–280 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.086

    Article  Google Scholar 

  16. Fang, W., Wei, Y., Liu, J.: Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics. J. Hazard. Mater. 310, 1–10 (2016). https://doi.org/10.1016/j.jhazmat.2016.02.025

    Article  Google Scholar 

  17. Cammarota, A., Cammarota, F., Chirone, R., Ruoppolo, G., Solimene, R., Urciuolo, M.: Fluidized bed combustion of pelletized sewage sludge in a pilot scale reactor. Combust. Sci. Technol. (2019). https://doi.org/10.1080/00102202.2019.1605363

    Article  Google Scholar 

  18. Sänger, M., Werther, J., Ogada, T.: NOx and N2O emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge. Fuel 80, 167–177 (2001). https://doi.org/10.1016/S0016-2361(00)00093-4

    Article  Google Scholar 

  19. Liu, Q., Jiang, P., Zhao, J., Zhang, B., Bian, H., Qian, G.: Life cycle assessment of an industrial symbiosis based on energy recovery from dried sludge and used oil. J. Clean. Prod. 19, 1700–1708 (2011). https://doi.org/10.1016/j.jclepro.2011.06.013

    Article  Google Scholar 

  20. Dong, J., Chi, Y., Tang, Y., Wang, F., Huang, Q.: Combined life cycle environmental and exergetic assessment of four typical sewage sludge treatment techniques in China. Energy Fuels 28, 2114–2122 (2014). https://doi.org/10.1021/ef4024146

    Article  Google Scholar 

  21. Wang, K.S., Chiou, I.J., Chen, C.H., Wang, D.: Lightweight properties and pore structure of foamed material made from sewage sludge ash. Constr. Build. Mater. 19, 627–633 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.002

    Article  Google Scholar 

  22. Chen, L., Lin, D.F.: Applications of sewage sludge ash and nano-SiO2 to manufacture tile as construction material. Constr. Build. Mater. 23, 3312–3320 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.049

    Article  Google Scholar 

  23. National Bureau of Statistics of China: China statistical yearbook (2019). https://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm

  24. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Statistical yearbook on urban and rural construction (2018). https://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/

  25. Vaxelaire, J., Cézac, P.: Moisture distribution in activated sludges: a review. Water Res. 38, 2215–2230 (2004). https://doi.org/10.1016/j.watres.2004.02.021

    Article  Google Scholar 

  26. Tsang, K.R., Vesilind, P.A.: Moisture distribution in sludges. Water Sci. Technol. 22, 135–142 (1990). https://doi.org/10.2166/wst.1990.0108

    Article  Google Scholar 

  27. Mikkelsen, L.H., Keiding, K.: Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res. 36, 2451–2462 (2002). https://doi.org/10.1016/S0043-1354(01)00477-8

    Article  Google Scholar 

  28. Vaxelaire, J.: Moisture sorption characteristics of waste activated sludge. J. Chem. Technol. Biotechnol. 76, 377–382 (2001). https://doi.org/10.1002/jctb.392

    Article  Google Scholar 

  29. Smith, J.K., Vesilind, P.A.: Dilatometric measurement of bound water in wastewater sludge. Water Res. 29, 2621–2626 (1995). https://doi.org/10.1016/0043-1354(95)00144-A

    Article  Google Scholar 

  30. Vesilind, P.A., Hsu, C.C.: Limits of sludge dewaterability. Water Sci. Technol. 36, 87–91 (1997). https://doi.org/10.1016/S0273-1223(97)00673-2

    Article  Google Scholar 

  31. Suzuki, M., Keey, R.B., Maeda, S.: On the characteristic drying curve. AIChE Symp. Ser. 73, 47–56 (1975). https://doi.org/10.1016/0017-9310(74)90055-6

    Article  Google Scholar 

  32. Kopp, J., Dichtl, N.: Influence of the free water content on the dewaterability of sewage sludges. Water Sci. Technol. 44, 177–183 (2001). https://doi.org/10.2166/wst.2001.0613

    Article  Google Scholar 

  33. Lee, D.J.: Moisture distribution and removal efficiency of waste activated sludges. Water Sci. Technol. 33, 269–272 (1996). https://doi.org/10.1016/0273-1223(96)00484-2

    Article  Google Scholar 

  34. Yen, P.S., Lee, D.J.: Errors in bound water measurements using centrifugal settling method. Water Res. 35, 4004–4009 (2001). https://doi.org/10.1016/S0043-1354(01)00275-5

    Article  Google Scholar 

  35. Erdincler, A., Vesilind, P.A.: Effect of sludge cell disruption on compactibility of biological sludges. Water Sci. Technol. 42, 119–126 (2000). https://doi.org/10.2166/wst.2000.0185

    Article  Google Scholar 

  36. Chen, G.W., Hung, W.T., Chang, I.L., Lee, S.F., Lee, D.J.: Continuous classification of moisture content in waste activated sludges. J. Environ. Eng. 123, 253–258 (1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:3(253)

    Article  Google Scholar 

  37. Ferrasse, J.-H., Lecomte, D.: Simultaneous heat-flow differential calorimetry and thermogravimetry for fast determination of sorption isotherms and heat of sorption in environmental or food engineering. Chem. Eng. Sci. 59, 1365–1376 (2004)

    Article  Google Scholar 

  38. Robinson, J., Knocke, W.R.: Use of dilatometric and drying techniques for assessing sludge dewatering characteristics. Water Environ. Res. 64, 60–68 (1992). https://doi.org/10.2175/wer.64.1.9

    Article  Google Scholar 

  39. Bertram, H.C., Purslow, P.P., Andersen, H.J.: Relationship between meat structure, water mobility, and distribution: a low-field nuclear magnetic resonance study. J. Agric. Food Chem. 50, 824–829 (2002). https://doi.org/10.1021/jf010738f

    Article  Google Scholar 

  40. Pietrzak, L.N., Frégeau-Reid, J., Chatson, B., Blackwell, B.: Observations on water distribution in soybean seed during hydration processes using nuclear magnetic resonance imaging. Can. J. Plant Sci. 82, 513–519 (2002). https://doi.org/10.4141/P01-150

    Article  Google Scholar 

  41. Mao, H., Wang, F., Mao, F., Chi, Y., Lu, S., Cen, K.: Measurement of water content and moisture distribution in sludge by 1H nuclear magnetic resonance spectroscopy. Dry. Technol. 34, 267–274 (2016). https://doi.org/10.1080/07373937.2015.1047952

    Article  Google Scholar 

  42. Mowla, D., Tran, H.N., Allen, D.G.: A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy 58, 365–378 (2013). https://doi.org/10.1016/j.biombioe.2013.09.002

    Article  Google Scholar 

  43. Buyukkamaci, N.: Biological sludge conditioning by Fenton’s reagent. Process Biochem. 39, 1503–1506 (2004). https://doi.org/10.1016/S0032-9592(03)00294-2

    Article  Google Scholar 

  44. Xiao, K., Chen, Y., Jiang, X., Yang, Q., Seow, W.Y., Zhu, W., Zhou, Y.: Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)–Oxone conditioning. Water Res. 109, 13–23 (2017). https://doi.org/10.1016/j.watres.2016.11.034

    Article  Google Scholar 

  45. Ruiz-Hernando, M., Cabanillas, E., Labanda, J., Llorens, J.: Ultrasound, thermal and alkali treatments affect extracellular polymeric substances (EPSs) and improve waste activated sludge dewatering. Process Biochem. 50, 438–446 (2015). https://doi.org/10.1016/j.procbio.2015.01.001

    Article  Google Scholar 

  46. Dhar, B.R., Nakhla, G., Ray, M.B.: Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manage 32, 542–549 (2012). https://doi.org/10.1016/j.wasman.2011.10.007

    Article  Google Scholar 

  47. Zhen, G., Yan, X., Zhou, H., Chen, H., Zhao, T., Zhao, Y.: Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge. J. Environ. Sci. 23, 1225–1232 (2011). https://doi.org/10.1016/S1001-0742(10)60539-6

    Article  Google Scholar 

  48. Ren, W., Zhou, Z., Jiang, L.M., Hu, D., Qiu, Z., Wei, H., Wang, L.: A cost-effective method for the treatment of reject water from sludge dewatering process using supernatant from sludge lime stabilization. Sep. Purif. Technol. 142, 123–128 (2015). https://doi.org/10.1016/j.seppur.2014.12.037

    Article  Google Scholar 

  49. Zhang, Z., Xia, S., Zhang, J.: Enhanced dewatering of waste sludge with microbial flocculant TJ-F1 as a novel conditioner. Water Res. 44, 3087–3092 (2010). https://doi.org/10.1016/j.watres.2010.02.033

    Article  Google Scholar 

  50. Lin, Q., Peng, H., Zhong, S., Xiang, J.: Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant. J. Hazard. Mater. 285, 199–206 (2015). https://doi.org/10.1016/j.jhazmat.2014.12.005

    Article  Google Scholar 

  51. Wang, J.P., Yuan, S.J., Wang, Y., Yu, H.Q.: Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res. 47, 2643–2648 (2013). https://doi.org/10.1016/j.watres.2013.01.050

    Article  Google Scholar 

  52. Ming-Yong, K.E.: Engineering Application of Biofilter Deodorization in Jimei Sewage Treatment Plant. China Water & Wastewater, Beijing (2011)

    Google Scholar 

  53. Cai, Z., Zhang, W.: Discussion on the sludge dewatering equipment selection in the Shaoxing Wastewater Treatment Plant. Water Wastewater Eng. 36, 10 (2010)

    Google Scholar 

  54. Bolto, B., Gregory, J.: Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324 (2007). https://doi.org/10.1016/j.watres.2007.03.012

    Article  Google Scholar 

  55. Shi, Y., Yang, J., Liang, S., Yu, W., Xiao, J., Song, J., Xu, X., Li, Y., Yang, C., Wu, X., Hu, J., Liu, B., Hou, H.: Principal component analysis on sewage sludge characteristics and its implication to dewatering performance with Fe2+/persulfate-skeleton builder conditioning. Int. J. Environ. Sci. Technol. 13, 2283–2292 (2016). https://doi.org/10.1007/s13762-016-1064-6

    Article  Google Scholar 

  56. Yu, W., Yang, J., Shi, Y., Song, J., Shi, Y., Xiao, J., Li, C., Xu, X., He, S., Liang, S., Wu, X., Hu, J.: Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Res. 95, 124–133 (2016). https://doi.org/10.1016/j.watres.2016.03.016

    Article  Google Scholar 

  57. Liu, H., Yang, J., Zhu, N., Zhang, H., Li, Y., He, S., Yang, C., Yao, H.: A comprehensive insight into the combined effects of Fenton’s reagent and skeleton builders on sludge deep dewatering performance. J. Hazard. Mater. 258–259, 144–150 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.036

    Article  Google Scholar 

  58. Xia, C., Yue, Q., Song, F., Liu, X., Gao, B., Zhang, T., Li, Q., Wang, Y.: A study on the deep dewatering of urban dewatered-sewage sludge by aluminum chloride. Desalin. Water Treat. 57, 545–552 (2016). https://doi.org/10.1080/19443994.2014.967728

    Article  Google Scholar 

  59. Liu, X.M., Sheng, G.P., Luo, H.W., Zhang, F., Yuan, S.J., Xu, J., Zeng, R.J., Wu, J.G., Yu, H.Q.: Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ. Sci. Technol. 44, 4355–4360 (2010). https://doi.org/10.1021/es9016766

    Article  Google Scholar 

  60. Neyens, E., Baeyens, J., Dewil, R., De Heyder, B.: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106, 83–92 (2004). https://doi.org/10.1016/j.jhazmat.2003.11.014

    Article  Google Scholar 

  61. Chen, Y., Yang, H., Gu, G.: Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res. 35, 2615–2620 (2001). https://doi.org/10.1016/S0043-1354(00)00565-0

    Article  Google Scholar 

  62. Liu, H., Yang, J., Shi, Y., Li, Y., He, S., Yang, C., Yao, H.: Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders. Chemosphere 88, 235–239 (2012). https://doi.org/10.1016/j.chemosphere.2012.02.084

    Article  Google Scholar 

  63. Mo, R., Huang, S., Dai, W., Liang, J., Sun, S.: A rapid Fenton treatment technique for sewage sludge dewatering. Chem. Eng. J. 269, 391–398 (2015). https://doi.org/10.1016/j.cej.2015.02.001

    Article  Google Scholar 

  64. Zhang, W., Yang, P., Yang, X., Chen, Z., Wang, D.: Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process. Bioresour. Technol. 181, 247–253 (2015). https://doi.org/10.1016/j.biortech.2015.01.003

    Article  Google Scholar 

  65. Shi, Y., Yang, J., Yu, W., Zhang, S., Liang, S., Song, J., Xu, Q., Ye, N., He, S., Yang, C., Hu, J.: Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder: Effect on sludge characteristics and dewaterability. Chem. Eng. J. 270, 572–581 (2015). https://doi.org/10.1016/j.cej.2015.01.122

    Article  Google Scholar 

  66. Chen, C., Zhang, P., Zeng, G., Deng, J., Zhou, Y., Lu, H.: Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem. Eng. J. 158, 616–622 (2010). https://doi.org/10.1016/j.cej.2010.02.021

    Article  Google Scholar 

  67. Zhou, J., Liu, Z., She, P., Ding, F.: Water removal from sludge in a horizontal electric field. Dry. Technol. 19, 627–638 (2001)

    Article  Google Scholar 

  68. Feng, Y., Zhan, T.L.T., Chen, Y.-M., Zhang, Q.-F.: Laboratroy study on electrokinetic dewatering of sewage sludge. In: Chen, Y., Zhan, L., Tang, X. (eds.) Advances in Environmental Geotechnics, pp. 662–665. Springer, New York (2010)

    Chapter  Google Scholar 

  69. Sun, B., Xin, Y., Hao, J., Zhu, X., Yan, Z.: Influence of conductivity on the electro-dewatering of sewage sludge under constant voltage. Sep. Sci. Technol. 52, 2429–2434 (2017)

    Article  Google Scholar 

  70. Wheeler, R.A., Hoadley, A.F.A., Clayton, S.A.: Modelling the mechanical thermal expression behaviour of lignite. Fuel 88, 1741–1751 (2009)

    Article  Google Scholar 

  71. Alishahi, M., Kamali, R., Abouali, O.: Molecular dynamics study of electric double layer in nanochannel. Russ. J. Electrochem. 51, 49–55 (2015)

    Article  Google Scholar 

  72. Henderson, D.: Recent progress in the theory of the electric double layer. Prog. Surf. Sci. 13, 197–224 (1983)

    Article  Google Scholar 

  73. Eichholz, C., Stolarski, M., Goertz, V., Nirschl, H.: Magnetic field enhanced cake filtration of superparamagnetic PVAc-particles. Chem. Eng. Sci. 63, 3193–3200 (2008)

    Article  Google Scholar 

  74. Li, S., Li, Y., Lu, Q., Zhu, J., Yao, Y., Bao, S.: Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units. Waste Manage 34, 2561–2566 (2014). https://doi.org/10.1016/j.wasman.2014.08.018

    Article  Google Scholar 

  75. Ma, X.W., Weng, H.X., Su, M.H., Pan, L.: Drying sewage sludge using flue gas from power plants in China. Environ. Earth Sci. 65, 1841–1846 (2012). https://doi.org/10.1007/s12665-011-1166-x

    Article  Google Scholar 

  76. Deng, W., Su, Y., Yu, W.: Theoretical calculation of heat transfer coefficient when sludge drying in a nara-type paddle dryer using different heat carriers. Procedia Environ. Sci. 18, 709–715 (2013). https://doi.org/10.1016/j.proenv.2013.04.096

    Article  Google Scholar 

  77. Ameri, B., Hanini, S., Benhamou, A., Chibane, D.: Comparative approach to the performance of direct and indirect solar drying of sludge from sewage plants, experimental and theoretical evaluation. Sol. Energy. 159, 722–732 (2018). https://doi.org/10.1016/j.solener.2017.11.032

    Article  Google Scholar 

  78. Bennamoun, L., Arlabosse, P., Léonard, A.: Review on fundamental aspect of application of drying process to wastewater sludge. Renew. Sustain. Energy Rev. 28, 29–43 (2013). https://doi.org/10.1016/j.rser.2013.07.043

    Article  Google Scholar 

  79. Mathioudakis, V.L., Kapagiannidis, A.G., Athanasoulia, E., Paltzoglou, A.D., Melidis, P., Aivasidis, A.: Sewage sludge solar drying: experiences from the first pilot-scale application in Greece. Dry. Technol. 31, 519–526 (2013). https://doi.org/10.1080/07373937.2012.744998

    Article  Google Scholar 

  80. Kurt, M., Aksoy, A., Sanin, F.D.: Evaluation of solar sludge drying alternatives by costs and area requirements. Water Res. 82, 47–57 (2015). https://doi.org/10.1016/j.watres.2015.04.043

    Article  Google Scholar 

  81. Zhai, T.Y., Fang, L.: Comparative study on the drying process and fractal dimension of sewage sledge: Microwave and air-blast. Appl. Mech. Mater. 423–426, 1409–1412 (2013). https://doi.org/10.4028/www.scientific.net/AMM.423-426.1409

    Article  Google Scholar 

  82. Ohm, T.I., Chae, J.S., Kim, J.E., Kim, H.K., Moon, S.H.: A study on the dewatering of industrial waste sludge by fry-drying technology. J. Hazard. Mater. 168, 445–450 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.053

    Article  Google Scholar 

  83. Mahmoud, A., Olivier, J., Vaxelaire, J., Hoadley, A.F.A.: Electrical field: a historical review of its application and contributions in wastewater sludge dewatering. Water Res. 44, 2381–2407 (2010). https://doi.org/10.1016/j.watres.2010.01.033

    Article  Google Scholar 

  84. Chen, G., Yue, P.L., Mujumdar, A.S.: Sludge dewatering and drying. Dry. Technol. 20, 883–916 (2002). https://doi.org/10.1081/DRT-120003768

    Article  Google Scholar 

  85. Adapa, P.K., Schoenau, G.J., Arinze, E.A.: Fractionation of alfalfa into leaves and stems using a three pass rotary drum dryer. Biosyst. Eng. 91, 455–463 (2005). https://doi.org/10.1016/j.biosystemseng.2004.12.003

    Article  Google Scholar 

  86. Pawar, S.B., Mujumdar, A.S., Thorat, B.N.: Flow pattern and heat transfer in agitated thin film dryer. Chem. Eng. Process. Process Intensif. 50, 687–693 (2011)

    Article  Google Scholar 

  87. Salihoglu, N.K., Pinarli, V., Salihoglu, G.: Solar drying in sludge management in Turkey. Renew. Energy. 32, 1661–1675 (2007)

    Article  Google Scholar 

  88. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Technical Guidelines for Sludge Treatment and Disposal of Urban Sewage Treatment Plants (on Trial), https://www.mohurd.gov.cn/wjfb/201103/t20110330_203014.html

  89. Abu-Orf, M., Stinson, B., Davies, G., Goss, T., Marija, P., Amad, S., Taylor, R., Belschner, D., Hartz, F., Hentz, L.: Energy recovery from residuals-comparing anaerobic digestion with combined heat and power to drying gasification. Proc. Water Environ. Fed. 2011, 550–572 (2011)

    Article  Google Scholar 

  90. Zhang, H., Liu, X., Zhu, S., Li, B.: Sewage sludge flow and drying characteristics in paddle dryers. Defect Diffus. Forum. 334–335, 365–368 (2013). https://doi.org/10.4028/www.scientific.net/DDF.334-335.365

    Article  Google Scholar 

  91. Arlabosse, P., Chavez, S., Lecomte, D.: Method for thermal design of paddle dryers: application to municipal sewage sludge. Dry. Technol. 22, 2375–2393 (2004). https://doi.org/10.1081/DRT-200040041

    Article  Google Scholar 

  92. Tsotsas, E., Kwapinska, M., Saage, G.: Modeling of contact dryers. Dry. Technol. 25, 1377–1391 (2007). https://doi.org/10.1080/07373930701439079

    Article  MATH  Google Scholar 

  93. Milhé, M., Charlou, C., Sauceau, M., Arlabosse, P.: Modeling of sewage sludge flow in a continuous paddle dryer. Dry. Technol. 33, 1061–1067 (2015). https://doi.org/10.1080/07373937.2014.982252

    Article  MATH  Google Scholar 

  94. Deng, W.Y., Yan, J.H., Li, X.D., Wang, F., Lu, S.Y., Chi, Y., Cen, K.F.: Measurement and simulation of the contact drying of sewage sludge in a Nara-type paddle dryer. Chem. Eng. Sci. 64, 5117–5124 (2009). https://doi.org/10.1016/j.ces.2009.08.015

    Article  Google Scholar 

  95. Ferrasse, J.H., Arlabosse, P., Lecomte, D.: Heat, momentum, and mass transfer measurements in indirect agitated sludge dryer. Dry. Technol. 20, 749–769 (2002). https://doi.org/10.1081/DRT-120003755

    Article  Google Scholar 

  96. Hasatani, M., Kasakura, T.: The state of the art of sludge drying in Japan. Dry. Technol. 11, 1495–1522 (1993). https://doi.org/10.1080/07373939308916917

    Article  Google Scholar 

  97. Metzger, T., Kwapinska, M., Peglow, M., Saage, G., Tsotsas, E.: Modern modelling methods in drying. Transp. Porous Media. 66, 103–120 (2007). https://doi.org/10.1007/s11242-006-9025-z

    Article  Google Scholar 

  98. Sahni, E.K., Chaudhuri, B.: Contact drying: A review of experimental and mechanistic modeling approaches. Int. J. Pharm. 434, 334–348 (2012). https://doi.org/10.1016/j.ijpharm.2012.06.010

    Article  Google Scholar 

  99. Milhé, M., Sauceau, M., Arlabosse, P.: Modeling of a continuous sewage sludge paddle dryer by coupling Markov chains with penetration theory. Appl. Math. Model. 40, 8201–8216 (2016). https://doi.org/10.1016/j.apm.2016.04.006

    Article  MATH  Google Scholar 

  100. Yan, J.H., Deng, W.Y., Li, X.D., Wang, F., Chi, Y., Lu, S.Y., Cen, K.F.: Experimental and theoretical study of agitated contact drying of sewage sludge under partial vacuum conditions. Dry. Technol. 27, 787–796 (2009). https://doi.org/10.1080/07373930902900911

    Article  Google Scholar 

  101. Peregrina, C., Lecomte, D., Arlabosse, P., Rudolph, V.: The environmental performance of an alternative fry-drying process for sewage sludge: A life cycle assessment study. In: Proceedings of the 4th Australian Conference on Life Cycle Assessment: Sustainability Measures for Decision Support. pp. 23–25 (2005)

  102. Bennamoun, L.: Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16, 1061–1073 (2012)

    Article  Google Scholar 

  103. Chen, H., Yan, S.H., Ye, Z.L., Meng, H.J., Zhu, Y.G.: Utilization of urban sewage sludge: Chinese perspectives. Environ. Sci. Pollut. Res. 19, 1454–1463 (2012). https://doi.org/10.1007/s11356-012-0760-0

    Article  Google Scholar 

  104. Samolada, M.C., Zabaniotou, A.A.: Potential application of pyrolysis for the effective valorisation of the end of life tires in Greece. Environ. Dev. 4, 73–87 (2012). https://doi.org/10.1016/j.envdev.2012.08.004

    Article  Google Scholar 

  105. Manara, P., Zabaniotou, A.: Towards sewage sludge based biofuels via thermochemical conversion - a review. Renew. Sustain. Energy Rev. 16, 2566–2582 (2012). https://doi.org/10.1016/j.rser.2012.01.074

    Article  Google Scholar 

  106. Cai, Z., Ma, X., Fang, S., Yu, Z., Lin, Y.: Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl. Therm. Eng. 106, 938–943 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.088

    Article  Google Scholar 

  107. Qi, X., Song, G., Song, W., Yang, S., Lu, Q.: Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge. J. Energy Inst. 91, 397–410 (2018). https://doi.org/10.1016/j.joei.2017.02.002

    Article  Google Scholar 

  108. Fang, S., Yu, Z., Lin, Y., Hu, S., Liao, Y., Ma, X.: Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers. Manage 101, 626–631 (2015). https://doi.org/10.1016/j.enconman.2015.06.026

    Article  Google Scholar 

  109. Yanfen, L., Xiaoqian, M.: Thermogravimetric analysis of the co-combustion of coal and paper mill sludge. Appl. Energy. 87, 3526–3532 (2010). https://doi.org/10.1016/j.apenergy.2010.05.008

    Article  Google Scholar 

  110. Jang, H.N., Kim, J.H., Back, S.K., Sung, J.H., Yoo, H.M., Choi, H.S., Seo, Y.C.: Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor. Fuel 170, 92–99 (2016). https://doi.org/10.1016/j.fuel.2015.12.033

    Article  Google Scholar 

  111. Van Caneghem, J., Brems, A., Lievens, P., Block, C., Billen, P., Vermeulen, I., Dewil, R., Baeyens, J., Vandecasteele, C.: Fluidized bed waste incinerators: design, operational and environmental issues. Prog. Energy Combust. Sci. 38, 551–582 (2012). https://doi.org/10.1016/j.pecs.2012.03.001

    Article  Google Scholar 

  112. Zhu, J.G., Yao, Y., Lu, Q.G., Gao, M., Ouyang, Z.Q.: Experimental investigation of gasification and incineration characteristics of dried sewage sludge in a circulating fluidized bed. Fuel 150, 441–447 (2015). https://doi.org/10.1016/j.fuel.2015.02.031

    Article  Google Scholar 

  113. Jing, C.: Post-evaluation of Sludge Treatment Project of Shanghai Shidongkou Municipal Wastewater Treatment Plant. China Water Wastewater 12, 14 (2012)

    Google Scholar 

  114. Cheng, X., Li, B., Wang, F.: Energy balance of shanghai zhuyuan sludge drying and incineration system. Energy Conserv. 10, 6 (2011)

    Google Scholar 

  115. Tan, P., Ma, L., Xia, J., Fang, Q., Zhang, C., Chen, G.: Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts. Energy 119, 392–399 (2017). https://doi.org/10.1016/j.energy.2016.12.084

    Article  Google Scholar 

  116. Rong, S., Hong, Y.: Investigation on application of sludge drying and co-incineration technology in coal-fired power plant. Energy Environ. (2014). https://doi.org/10.3969/j.issn.1672-9064.2014.05.036

    Article  Google Scholar 

  117. Magdziarz, A., Wilk, M., Gajek, M., Nowak-Woźny, D., Kopia, A., Kalemba-Rec, I., Koziński, J.A.: Properties of ash generated during sewage sludge combustion: a multifaceted analysis. Energy. 113, 85–94 (2016). https://doi.org/10.1016/j.energy.2016.07.029

    Article  Google Scholar 

  118. Sever Akdağ, A., Atak, O., Atimtay, A.T., Sanin, F.D.: Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor. Energy. 158, 417–426 (2018). https://doi.org/10.1016/j.energy.2018.06.040

    Article  Google Scholar 

  119. Lu, S., Yang, L., Zhou, F., Wang, F., Yan, J., Li, X., Chi, Y., Cen, K.: Atmospheric emission characterization of a novel sludge drying and co-combustion system. J. Environ. Sci. (China) 25, 2088–2092 (2013). https://doi.org/10.1016/S1001-0742(12)60272-1

    Article  Google Scholar 

  120. Hoornweg, D., Bhada, P.: What a Waste. A Global Review of Solid Waste Management. (2012)

  121. China Statistics Bureau: China statistical yearbook. (2012)

  122. Mian, M.M., Zeng, X., Nasry, A.A.N.B., Al-Hamadani, S.M.: Municipal solid waste management in China: a comparative analysis. J. Mater. Cycles Waste Manag. 19, 1127–1135 (2017). https://doi.org/10.1007/s10163-016-0509-9

    Article  Google Scholar 

  123. Leckner, B.: Process aspects in combustion and gasification Waste-to-Energy (WtE) units. Waste Manage 37, 13–25 (2015)

    Article  Google Scholar 

  124. Jiang, L.B., Yuan, X.Z., Li, H., Chen, X.H., Xiao, Z.H., Liang, J., Leng, L.J., Guo, Z., Zeng, G.M.: Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits. Fuel Process. Technol. 145, 109–115 (2016). https://doi.org/10.1016/j.fuproc.2016.01.027

    Article  Google Scholar 

  125. Kijo-Kleczkowska, A., Środa, K., Kosowska-Golachowska, M., Musiał, T., Wolski, K.: Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form. Waste Manage 53, 165–181 (2016). https://doi.org/10.1016/j.wasman.2016.04.021

    Article  Google Scholar 

  126. Tsuji, H., Hashimoto, N., Sfflral, H., Makino, H.: A study on combustion characteristics of dried sludge pellets by use of a pulverized coal combustion test furnace. Nihon Enerugi Gakkaishi/Journal Japan Inst. Energy. 88, 422–429 (2009). https://doi.org/10.3775/jie.88.422

    Article  Google Scholar 

  127. Zhang, S., Feng, L., Peng, X., Mao, M., Chi, Y., Wang, F.: Effect of sludge pellets addition on combustion characteristics and ash behaviour of municipal solid waste. Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-00996-5

    Article  Google Scholar 

  128. Liu, H., Luo, G.Q., Hu, H.Y., Zhang, Q., Yang, J.K., Yao, H.: Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J. Hazard. Mater. 235–236, 298–306 (2012). https://doi.org/10.1016/j.jhazmat.2012.07.060

    Article  Google Scholar 

  129. Gostelow, P., Parsons, S.A., Stuetz, R.M.: Odour measurements for sewage treatment works. Water Res. 35, 579–597 (2001). https://doi.org/10.1016/S0043-1354(00)00313-4

    Article  Google Scholar 

  130. Chang, J.S., Abu-Orf, M., Dentel, S.K.: Alkylamine odors from degradation of flocculant polymers in sludges. Water Res. 39, 3369–3375 (2005). https://doi.org/10.1016/j.watres.2005.05.047

    Article  Google Scholar 

  131. Ren, L.H., Nie, Y.F., Liu, J.G., Jin, Y.Y., Sun, L.: Impact of hydrothermal process on the nutrient ingredients of restaurant garbage. J. Environ. Sci. (China) 18, 1012–1019 (2006). https://doi.org/10.1016/S1001-0742(06)60031-4

    Article  Google Scholar 

  132. Shanableh, A., Jones, S.: Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment. Water Sci. Technol. 44, 129–135 (2001). https://doi.org/10.2166/wst.2001.0600

    Article  Google Scholar 

  133. Jomaa, S., Shanableh, A., Khalil, W., Trebilco, B.: Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Adv. Environ. Res. 7, 647–653 (2003). https://doi.org/10.1016/S1093-0191(02)00042-4

    Article  Google Scholar 

  134. Shanableh, A.: Production of useful organic matter from sludge using hydrothermal treatment. Water Res. 34, 945–951 (2000). https://doi.org/10.1016/S0043-1354(99)00222-5

    Article  Google Scholar 

  135. Dai, Z., Tian, L., Liu, C., Weng, H.: Chlorobenzene release during thermal drying of sludge: mechanism and source. Water. Air. Soil Pollut. (2017). https://doi.org/10.1007/s11270-017-3554-7

    Article  Google Scholar 

  136. Lianghu, S.U., Meilan, Z., Xinlong, S.H.I.: In situ odor control of sewage sludge by addition of ferric hydroxide. Environ. Pollut. Control. 34, 1–868 (2012)

    Google Scholar 

  137. Deng, W.Y., Yan, J.H., Li, X.D., Wang, F., Zhu, X.W., Lu, S.Y., Cen, K.F.: Emission characteristics of volatile compounds during sludges drying process. J. Hazard. Mater. 162, 186–192 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.022

    Article  Google Scholar 

  138. Guo, J., Xu, W.S., Chen, Y.L., Lua, A.C.: Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid Interface Sci. 281, 285–290 (2005)

    Article  Google Scholar 

  139. Weng, H., Dai, Z., Ji, Z., Gao, C., Liu, C.: Release and control of hydrogen sulfide during sludge thermal drying. J. Hazard. Mater. 296, 61–67 (2015). https://doi.org/10.1016/j.jhazmat.2015.04.037

    Article  Google Scholar 

  140. Zhou, Y., Ning, X., Liao, X., Lin, M., Liu, J., Wang, J.: Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol. Environ. Saf. 95, 130–136 (2013). https://doi.org/10.1016/j.ecoenv.2013.05.026

    Article  Google Scholar 

  141. Ni, P., Li, H., Zhao, Y., Zhang, J., Zheng, C.: Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators. Environ. Technol. (United Kingdom) 38, 2105–2118 (2017). https://doi.org/10.1080/09593330.2016.1246612

    Article  Google Scholar 

  142. Kuo, J.H., Lin, C.L., Wey, M.Y.: Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration. Fuel Process. Technol. 92, 2089–2098 (2011). https://doi.org/10.1016/j.fuproc.2011.06.014

    Article  Google Scholar 

  143. Official Journal of the European Union: Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). (2010)

  144. Han, Y., Hwang, G., Kim, D., Park, S., Kim, H.: Porous Ca-based bead sorbents for simultaneous removal of SO2, fine particulate matters, and heavy metals from pilot plant sewage sludge incineration. J. Hazard. Mater. 283, 44–52 (2014). https://doi.org/10.1016/j.jhazmat.2014.09.009

    Article  Google Scholar 

  145. Batistella, L., Silva, V., Suzin, R.C., Virmond, E., Althoff, C.A., Moreira, R.F.P.M., José, H.J.: Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Manage 46, 430–439 (2015). https://doi.org/10.1016/j.wasman.2015.08.039

    Article  Google Scholar 

  146. Bianchini, A., Bonfiglioli, L., Pellegrini, M., Saccani, C.: Sewage sludge drying process integration with a waste-to-energy power plant. Waste Manage 42, 159–165 (2015). https://doi.org/10.1016/j.wasman.2015.04.020

    Article  Google Scholar 

  147. Fang, P., Cen, C.P., Wang, X.M., Tang, Z.J., Tang, Z.X., Chen, D.S.: Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea + KMnO4 solution. Fuel Process. Technol. 106, 645–653 (2013). https://doi.org/10.1016/j.fuproc.2012.09.060

    Article  Google Scholar 

  148. Ping, F., Zijun, T., Zhixiong, T., Chaoping, C.E.N.: Experimental study on denitrification from sewage sludge and coal co-firing flue gas using urea-SNCR technology. Environ. Sci. Technol. (2014)

  149. Deng, W., Yan, J., Li, X., Wang, F., Chi, Y., Lu, S.: Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. J. Environ. Sci. 21, 1747–1752 (2009). https://doi.org/10.1016/S1001-0742(08)62483-3

    Article  Google Scholar 

  150. Kilgroe, J.D.: Control of dioxin, furan, and mercury emissions from municipal waste combustors. J. Hazard. Mater. 47, 163–194 (1996)

    Article  Google Scholar 

  151. Cains, P.W., Mccausland, L.J., Fernandes, A.R., Dyke, P.: Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: effects of fly ash and carbon source. Environ. Sci. Technol. 31, 776–785 (1997). https://doi.org/10.1021/es960468v

    Article  Google Scholar 

  152. Milligan, M.S., Altwicker, E.: The relationship between de novo synthesis of polychlorinated dlbenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash. Environ. Sci. Technol. 27, 1595–1601 (1993). https://doi.org/10.1021/es00045a015

    Article  Google Scholar 

  153. Ji, S.S., Ren, Y., Buekens, A., Chen, T., Lu, S.Y., Cen, K.F., Li, X.D.: Treating PCDD/Fs by combined catalysis and activated carbon adsorption. Chemosphere 102, 31–36 (2014). https://doi.org/10.1016/j.chemosphere.2013.12.008

    Article  Google Scholar 

  154. Zhang, G., Hai, J., Cheng, J.: Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China. Waste Manage 32, 1156–1162 (2012). https://doi.org/10.1016/j.wasman.2012.01.024

    Article  Google Scholar 

  155. Chi, K.H., Chang, S.H., Huang, C.H., Huang, H.C., Chang, M.B.: Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption. Chemosphere 64, 1489–1498 (2006). https://doi.org/10.1016/j.chemosphere.2005.12.072

    Article  Google Scholar 

  156. Zhang, G., Hai, J., Ren, M., Zhang, S., Cheng, J., Yang, Z.: Emission, mass balance, and distribution characteristics of PCDD/Fs and heavy metals during cocombustion of sewage sludge and coal in power plants. Environ. Sci. Technol. 47, 2123–2130 (2013). https://doi.org/10.1021/es304127k

    Article  Google Scholar 

  157. Zhou, X., Li, X., Xu, S., Zhao, X., Ni, M., Cen, K.: Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system. Environ. Sci. Pollut. Res. 22, 10463–10470 (2015). https://doi.org/10.1007/s11356-015-4180-9

    Article  Google Scholar 

  158. Izakmehri, Z., Ganji, M.D., Ardjmand, M.: Adsorption of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine, defected and Al-doped carbon nanotube: a dispersion corrected DFT study. Vacuum 136, 51–59 (2017). https://doi.org/10.1016/j.vacuum.2016.11.025

    Article  Google Scholar 

  159. Cyr, M., Coutand, M., Clastres, P.: Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37, 1278–1289 (2007). https://doi.org/10.1016/j.cemconres.2007.04.003

    Article  Google Scholar 

  160. Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.G.: Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage 29, 1122–1128 (2009). https://doi.org/10.1016/j.wasman.2008.09.011

    Article  Google Scholar 

  161. Hu, Y., Zhang, P., Li, J., Chen, D.: Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. J. Hazard. Mater. 299, 149–157 (2015). https://doi.org/10.1016/j.jhazmat.2015.06.002

    Article  Google Scholar 

  162. Parka, Y.J., Moonb, S.O., Heob, J.: Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. Ceram. Int. 29, 223–227 (2003)

    Article  Google Scholar 

  163. Li, R., Li, Y., Yang, T., Wang, L., Wang, W.: A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash. J. Hazard. Mater. 289, 197–203 (2015). https://doi.org/10.1016/j.jhazmat.2015.02.055

    Article  Google Scholar 

  164. Bie, R., Chen, P., Song, X., Ji, X.: Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J. Energy Inst. 89, 704–712 (2016). https://doi.org/10.1016/j.joei.2015.04.006

    Article  Google Scholar 

  165. Monzó, J., Payá, J., Borrachero, M.V., Girbés, I.: Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Manage 23, 373–381 (2003). https://doi.org/10.1016/S0956-053X(03)00034-5

    Article  Google Scholar 

  166. Nzihou, A., Sharrock, P.: Calcium phosphate stabilization of fly ash with chloride extraction. Waste Manage 22, 235–239 (2002). https://doi.org/10.1016/S0956-053X(01)00074-5

    Article  Google Scholar 

  167. Zhiliang, C., Minghui, T., Shengyong, L., Buekens, A., Jiamin, D., Qili, Q., Jianhua, Y.: Mechanochemical degradation of PCDD/Fs in fly ash within different milling systems. Chemosphere (2019). https://doi.org/10.1016/j.chemosphere.2019.02.066

    Article  Google Scholar 

  168. Qiu, Q., Jiang, X., Chen, Z., Lu, S., Ni, M.: Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash. Energy Fuels 31, 5222–5232 (2017). https://doi.org/10.1021/acs.energyfuels.6b02516

    Article  Google Scholar 

  169. Sun, X., Li, J., Zhao, X., Zhu, B., Zhang, G.: A review on the management of municipal solid waste fly ash in American. Procedia Environ. Sci. 31, 535–540 (2016). https://doi.org/10.1016/j.proenv.2016.02.079

    Article  Google Scholar 

  170. Wang, K.S., Lin, K.L., Lee, C.H.: Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction. J. Hazard. Mater. 162, 338–343 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.052

    Article  Google Scholar 

  171. Jakob, A., Stucki, S., Kuhn, P.: Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol. 29, 2429–2436 (1995). https://doi.org/10.1021/es00009a040

    Article  Google Scholar 

  172. Ministry of Ecology Environment of the People’s Republic of China: Technical specification for pollution control of fly-ash from municipal solid waste incineration. China (2019)

  173. Schluender, E.U.: Contact drying of particulate material under vacuum. IEE Conf. Publ. 1, 184–193 (1980)

    Google Scholar 

  174. Kohout, M., Stepanek, F.: Multi-scale analysis of vacuum contact drying. Dry. Technol. 25, 1265–1273 (2007). https://doi.org/10.1080/07373930701438741

    Article  Google Scholar 

  175. Kohout, M., Collier, A.P., Štěpánek, F.: Mathematical modelling of solvent drying from a static particle bed. Chem. Eng. Sci. 61, 3674–3685 (2006). https://doi.org/10.1016/j.ces.2005.12.036

    Article  Google Scholar 

  176. Michaud, A., Peczalski, R., Andrieu, J.: Experimental study and modeling of crystalline powders vacuum contact drying with intermittent stirring. Dry. Technol. 25, 1163–1173 (2007). https://doi.org/10.1080/07373930701438501

    Article  Google Scholar 

  177. Nowicki, S.C., Davis, H.T., Scriven, L.E.: Microscopic determination of transport parameters in drying porous media. Dry. Technol. 10, 925–946 (1992). https://doi.org/10.1080/07373939208916488

    Article  Google Scholar 

  178. Laurindo, J.B., Prat, M.: Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chem. Eng. Sci. 53, 2257–2269 (1998). https://doi.org/10.1016/S0009-2509(97)00348-5

    Article  Google Scholar 

  179. Metzger, T., Tsotsas, E.: Influence of pore size distribution on drying kinetics: a simple capillary model. Dry. Technol. 23, 1797–1809 (2005). https://doi.org/10.1080/07373930500209830

    Article  Google Scholar 

  180. Ma, J., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498–508 (2014). https://doi.org/10.1016/j.fuel.2013.08.041

    Article  Google Scholar 

  181. Le, K.H., Kharaghani, A., Kirsch, C., Tsotsas, E.: Discrete pore network modeling of superheated steam drying. Dry. Technol. 35, 1584–1601 (2017). https://doi.org/10.1080/07373937.2016.1264414

    Article  Google Scholar 

  182. Sharifi, S., Murthy, S., Takács, I., Massoudieh, A.: Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo. Water Res. 50, 254–266 (2014). https://doi.org/10.1016/j.watres.2013.12.010

    Article  Google Scholar 

  183. Chen, S., Wang, F., Milhé, M., Arlabosse, P., Liang, F., Chi, Y., Nzihou, A., Yan, J.: Experimental and theoretical research on agitated contact drying of sewage sludge in a continuous paddle dryer. Dry. Technol. 34, 1979–1990 (2016). https://doi.org/10.1080/07373937.2016.1147457

    Article  Google Scholar 

  184. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  185. Kwapinska, M., Saage, G., Tsotsas, E.: Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technol. 181, 331–342 (2008). https://doi.org/10.1016/j.powtec.2007.05.025

    Article  Google Scholar 

  186. Sinnott, M., Cleary, P.W., Morrison, R.D.: Slurry flow in a tower mill. Miner. Eng. 24, 152–159 (2011). https://doi.org/10.1016/j.mineng.2010.11.002

    Article  Google Scholar 

  187. Yao, H., Naruse, I.: Combustion characteristics of dried sewage sludge and control of trace-metal emission. Energy Fuels 19, 2298–2303 (2005). https://doi.org/10.1021/ef0501039

    Article  Google Scholar 

  188. Chen, J., Xie, C., Liu, J., He, Y., Xie, W., Zhang, X., Chang, K., Kuo, J., Sun, J., Zheng, L., Sun, S., Buyukada, M., Evrendilek, F.: Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour. Technol. 250, 230–238 (2018). https://doi.org/10.1016/j.biortech.2017.11.031

    Article  Google Scholar 

  189. Niu, S., Chen, M., Li, Y., Xue, F.: Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel 178, 129–138 (2016). https://doi.org/10.1016/j.fuel.2016.03.053

    Article  Google Scholar 

  190. Xiao, H.M., Ma, X.Q., Lai, Z.Y.: Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl. Energy 86, 1741–1745 (2009). https://doi.org/10.1016/j.apenergy.2008.11.016

    Article  Google Scholar 

  191. He, Q., Xie, D., Xu, R., Wang, T., Hu, B.: The utilization of sewage sludge by blending with coal water slurry. Fuel 159, 40–44 (2015). https://doi.org/10.1016/j.fuel.2015.06.071

    Article  Google Scholar 

  192. Lin, Y., Liao, Y., Yu, Z., Fang, S., Ma, X.: The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochim. Acta. 653, 71–78 (2017). https://doi.org/10.1016/j.tca.2017.04.003

    Article  Google Scholar 

  193. Liu, J., Jiang, X., Zhou, L., Wang, H., Han, X.: Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler. J. Hazard. Mater. 167, 817–823 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.061

    Article  Google Scholar 

  194. Dong, H., Jiang, X., Lv, G., Wang, F., Huang, Q., Chi, Y., Yan, J., Yuan, W., Chen, X., Luo, W.: Co-combustion of tannery sludge in a bench-scale fluidized-bed combustor: gaseous emissions and Cr distribution and speciation. Energy Fuels 31, 11069–11077 (2017). https://doi.org/10.1021/acs.energyfuels.7b01831

    Article  Google Scholar 

  195. Duan, Y., Zhao, C., Wang, Y., Wu, C.: Mercury emission from co-combustion of coal and sludge in a circulating fluidized-bed incinerator. Energy Fuels 24, 220–224 (2010). https://doi.org/10.1021/ef900565c

    Article  Google Scholar 

  196. Hu, Z., Ma, X., Chen, Y., Liao, Y., Wu, J., Yu, Z., Li, S., Yin, L., Xu, Q.: Co-combustion of coal with printing and dyeing sludge: numerical simulation of the process and related NOX emissions. Fuel 139, 606–613 (2015). https://doi.org/10.1016/j.fuel.2014.09.047

    Article  Google Scholar 

  197. Yu, L., Zheng, J., Yuan, X., Song, H., Peng, J., Ren, M.: Characterization and mass balance of PCDD/Fs during the co-combustion of sewage sludge in a grate-type municipal solid waste incineration. Procedia Environ. Sci. 31, 303–308 (2016). https://doi.org/10.1016/j.proenv.2016.02.040

    Article  Google Scholar 

  198. Lv, D., Zhu, T., Liu, R., Lv, Q., Sun, Y., Wang, H., Liu, Y., Zhang, F.: Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions. Chemosphere 159, 595–601 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.062

    Article  Google Scholar 

  199. Guo, F., Zhong, Z.: Pollution emission and heavy metal speciation from co-combustion of sedum plumbizincicola and sludge in fluidized bed. J. Clean. Prod. 179, 317–324 (2018). https://doi.org/10.1016/j.jclepro.2018.01.105

    Article  Google Scholar 

  200. Ren, Q., Li, L.: Co-combustion of agricultural straw with municipal sewage sludge in a fluidized bed: role of phosphorus in potassium behavior. Energy Fuels 29, 4321–4327 (2015). https://doi.org/10.1021/acs.energyfuels.5b00790

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Plan Project of Zhejiang Province (Grant Nos. 2018C03041, 2018C03007) and the Key Project of Innovation of Science and Technology of Ningbo City (Grant No. 2018B10023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, F., Mei, Z. et al. Status and Development of Sludge Incineration in China. Waste Biomass Valor 12, 3541–3574 (2021). https://doi.org/10.1007/s12649-020-01217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01217-9

Keywords

Navigation