Skip to main content

Sewage Sludge Recycling and Disposal

  • Chapter
  • First Online:
Solid Waste Engineering and Management

Abstract

This chapter introduces the potential recycling of sewage sludge in landfill cover application. The subtopic includes the generation and properties of sewage sludge as well as the current practices on sludge handling, treatment, and management. Since 2000, the recycling of sewage sludge has gained interest around the world in order to manage the sludge sustainably and economically. Nevertheless, sludge modification is required to stabilize and enhance the mechanical and geotechnical performance of the sludge. The leaching behavior was also studied in order to address the short- and long-term environmental effects of using the modified sludge for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminum

As:

Arsenic

Ca:

Calcium

CaO:

Quicklime

Ca(OH)2:

Hydrated lime

CaSO4:

Gypsum

Cd:

Cadmium

Co:

Cobalt

Cr:

Chromium

CH:

Portlandite

CH4:

Methane

CO:

Carbon monoxide

CO2:

Carbon dioxide

COD:

Chemical oxygen demand

CP:

Coir pith

CS:

Construction sludge

CSH:

Calcium silicate hydrate

C2S:

Belite

C3S:

Alite

C u :

Uniformity coefficient

C c :

Curvature coefficient

Dc:

Degree of compaction

EDX:

Energy dispersive X-ray

FA:

Fly ash

Fe:

Iron

FeSO4:

Iron sulfate

Fe(OH)2:

Iron hydroxide

H2SO4:

Sulfuric acid

Hg:

Mercury

IO:

Inorganic

K:

Potassium

LOI:

Loss on ignition

Mg:

Magnesium

MLSS:

Mixed liquor-suspended solid

ŋ :

Porosity (%)

N:

Nitrogen

Ni:

Nickel

ρ d :

Dry density (g/cm3)

ρ dmax :

Maximum dry density (g/cm3)

ρ s :

Density of the particles (g/cm3)

P:

Phosphorus

PE:

Population equivalent

Pb:

Lead

PTEs:

Potentially toxic elements

S:

Sulfur

SAC:

Sulphoaluminate cement

SBR:

Sequenced batch reactor

SEM:

Scanning electron microscopy

Si:

Silica

SS:

Sewage sludge

SS:

Suspended solid

SSA:

Sewage sludge ash

TC:

Tire chips

TDA:

Tire derived aggregate

USEPA:

US Environmental Protection Agency

XRD:

X-ray diffraction

XRF:

X-ray fluorescence

References

  1. SPAN (2019) SPAN annual report 2018. Accessed online through https://www.span.gov.my/document/upload/D5JoapftrLSaCCPh69zqhGokD8pzvN8B.pdf

  2. SSD (2020) Details of sewerage system in Sarawak as at 31 December 2018. Accessed online through https://ssd.sarawak.gov.my/upload/file_folder/Data%20&%20Statistics/Inventory%20Wastewater%20Treatment%20Facilities/Summary%20of%20IWTF%20as%20at%2031.12.2018.pdf

  3. Cisneros BJ (2011) Safe sanitation in low economic development areas. Treatise Water Sci 2011:147–200

    Google Scholar 

  4. Dahiya A (2020) Biofuel conversion pathways service learning projects and case studies. In: Bioenergy. Academic Press, Cambridge, MA, pp 671–690

    Google Scholar 

  5. El-Hafiz AA, Farghaly SM, El Baz AR (2017) Study the performance of circular clarifier in existing potable water treatment plant by using computational fluid dynamics. XVI World Water Congress. International Water Resources Association, Mexico

    Google Scholar 

  6. Jasim NA (2020) The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Eng 7(1):1723782

    Google Scholar 

  7. Mareddy AR (2017) 5-Impacts on air environment. In: Environmental impact assessment. Butterworth-Heinemann, Cambridge, MA, pp 171–216

    Google Scholar 

  8. Hirschmann R (2020) Population density of Malaysia 2000–2018. Access online through www.statistica.com

  9. Zakaria MS, Hassan S, Faizairi M, Petronas UT, Iskandar BS (2015) Characterization of Malaysian sewage sludge dried using thermal dryer. J Adv Res Fluid Mech Therm Sci 5:24–29

    Google Scholar 

  10. Dentel SK, Qi Y (2014) Management of sludges, biosolids, and residuals. Comprehensive Water Quality and Purification, pp. 223–243. https://doi.org/10.1016/B978-0-12-382182-9.00049-9

  11. Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467

    CAS  Google Scholar 

  12. Christodoulou A, Stamatelatou K (2016) Overview of legislation on sewage sludge management in developed countries worldwide. Water Sci Technol 73(3):453–462

    CAS  Google Scholar 

  13. Low EW, Chase HA (1999) Reducing production of excess biomass during wastewater treatment. Water Res 33(5):1119–1132

    CAS  Google Scholar 

  14. Mayhew M, Stephenson T (1997) Low biomass yield activated sludge: a review. Environ Technol 18(9):883–892

    CAS  Google Scholar 

  15. Liu Y, Tay JH (2001) Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol Adv 19(2):97–107

    Google Scholar 

  16. Guo JS, Fang F, Yan P, Chen YP (2020) Sludge reduction based on microbial metabolism for sustainable wastewater treatment. Bioresour Technol 297:122506

    CAS  Google Scholar 

  17. Kamiya T, Hirotsuji J (1998) New combined system of biological process and intermittent ozonation for advanced wastewater treatment. Water Sci Technol 38(8–9):145–153

    CAS  Google Scholar 

  18. Bradley RM, Dhanagunan GR (2004) Sewage sludge management in Malaysia. Int J Water 2(4):267–283. https://doi.org/10.1504/IJW.2004.005526

    Article  CAS  Google Scholar 

  19. Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32(6):1186–1195. https://doi.org/10.1016/j.wasman.2012.01.012

    Article  CAS  Google Scholar 

  20. Yu S, Zhang G, Li J, Zhao Z, Kang X (2013) Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresour Technol 146:758–761. https://doi.org/10.1016/j.biortech.2013.07.087

    Article  CAS  Google Scholar 

  21. Zhang P, Zhang G, Wang W (2007) Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour Technol 98(1):207–210

    CAS  Google Scholar 

  22. Li YL, Liu JW, Chen JY, Shi YF, Mao W, Liu H, Yang JK (2014) Reuse of dewatered sewage sludge conditioned with skeleton builders as landfill cover material. Int J Environ Sci Technol 11(1):233–240. https://doi.org/10.1007/s13762-013-0199-y

    Article  CAS  Google Scholar 

  23. Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. https://doi.org/10.1016/j.watres.2015.04.002

    Article  CAS  Google Scholar 

  24. Wang W, Luo Y, Qiao W (2010) Possible solutions for sludge dewatering in China. Front Environ Sci Eng China 4(1):102–107

    Google Scholar 

  25. O’Kelly BC (2016) Geotechnics of municipal sludges and residues for landfilling. Geotech Res 3(4):148–179. https://doi.org/10.1680/jgere.16.00013

    Article  Google Scholar 

  26. Rosli NA, Aziz HA, Selamat MR, Lim LLP (2020) A mixture of sewage sludge and red gypsum as an alternative material for temporary landfill cover. J Environ Manag 263:110420

    CAS  Google Scholar 

  27. Tantawy MA, El-Roudi AM, Abdalla EM, Abdelzaher MA (2012) Evaluation of the pozzolanic activity of sewage sludge ash. ISRN Chem Eng 2012. https://doi.org/10.5402/2012/487037

  28. Bonfiglioli L, Bianchini A, Pellegrini M, Saccani C (2014) Sewage sludge: characteristics and recovery options Università di Bologna: Bologna, Italy

    Google Scholar 

  29. Amminudin AL, Ramadhansyah PJ, Doh SI, Mangi SA, Haziman WM (2020) Effect of dried sewage sludge on compressive strength of concrete. In: IOP conference series: materials science and engineering, vol 712, no 1. IOP Publishing, p 012042. https://doi.org/10.1088/1757-899X/712/1/012042

  30. Souza MM, Anjos MA, Sá MV, Souza NS (2020) Developing and classifying lightweight aggregates from sewage sludge and rice husk ash. Case Stud Constr Mater 12:e00340. https://doi.org/10.1016/jcscm.2020.e00340

    Article  Google Scholar 

  31. Li R, Shu T, Li Y, Fang F, Yang T (2019) Migration characteristics and toxicity evaluation of heavy metals during the preparation of lightweight aggregate from sewage sludge. Environ Sci Pollut Res 26(9):9123–9136. https://doi.org/10.1007/s11356-019-04234-x

    Article  CAS  Google Scholar 

  32. Li X, He C, Lv Y, Jian S, Liu G, Jiang W, Jiang D (2020) Utilization of municipal sewage sludge and waste glass powder in production of lightweight aggregates. Constr Build Mater 256:119413. https://doi.org/10.1016/j.conbuildmat.2020.119413

    Article  Google Scholar 

  33. Szöke AM (2013) The framing of the raw materials used for manufacturing some rough ceramic materials into polinary oxide systems. Ovidius Uni Ann Chem 24(2):131–137. https://doi.org/10.2478/auoc-2013-0022

    Article  Google Scholar 

  34. National Research Council (1996) Municipal wastewater, sewage and agriculture: use of reclaimed water and sludge in food crop production. National Academies Press, Washington, DC

    Google Scholar 

  35. Shiba NC, Ntuli F (2017) Extraction and precipitation of phosphorus from sewage sludge. Waste Manag 60:191–200

    CAS  Google Scholar 

  36. Pöykiö R, Watkins G, Dahl O (2019) Characterisation of municipal sewage sludge as a soil improver and a fertilizer product. Ecol Chem Eng Sci 26(3):547–557

    Google Scholar 

  37. Biswas BK, Inoue K, Harada H, Ohto K, Kawakita H (2009) Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci 21(12):1753–1760

    CAS  Google Scholar 

  38. Mtshali JS, Tiruneh AT, Fadiran AO (2014) Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resour Environ 4(4):190–199

    Google Scholar 

  39. Wang MJ (1997) Land application of sewage sludge in China. Sci Total Environ 197(1–3):149–160

    CAS  Google Scholar 

  40. Franus M, Barnat-Hunek D, Wdowin M (2016) Utilization of sewage sludge in the manufacture of lightweight aggregate. Environ Monit Assess 188(1):10

    Google Scholar 

  41. Kaji M (2012) Role of experts and public participation in pollution control: the case of Itai-itai disease in Japan. Ethics in Sci Environ Polit 12(2):99–111

    Google Scholar 

  42. Abbas AM, Abd-Elmabod SK, El-Ashry SM, Soliman WS, El-Tayeh N, Castillo JM (2019) Capability of the invasive tree Prosopis glandulosa Torr. To remediate soil treated with sewage sludge. Sustainability 11(9):2711. https://doi.org/10.3390/su11092711

    Article  Google Scholar 

  43. Rosenani AB, Kala DR, Fauziah CI (2008) Characterization of Malaysian sewage sludge and nitrogen mineralization in three soils treated with sewage sludge. Malays J Soil Sci 12:103–112

    Google Scholar 

  44. Nkinahamira F, Suanon F, Chi Q, Li Y, Feng M, Huang X, Sun Q (2019) Occurrence, geochemical fractionation, and environmental risk assessment of major and trace elements in sewage sludge. J Environ Manag 249:109427. https://doi.org/10.1016/j.envman.2019.10947

    Article  CAS  Google Scholar 

  45. Tabatabai MA, Frankenberger WT Jr (1979) Chemical composition of sewage sludges in Iowa. Iowa Agric Home Econ Exp Station Res Bull 36(586):1

    Google Scholar 

  46. Roslan SN, Ghazali SS, Asli NM (2013) Study on the characteristics and utilization of sewage sludge at Indah Water Konsortium (IWK) Sungai Udang, Melaka. In: Proceedings of world academy of science, engineering and technology (no. 80). World Academy of Science, Engineering and Technology (WASET), p 647. https://doi.org/10.5281/zenodo.1086725

    Chapter  Google Scholar 

  47. de Figueiredo CC, Chagas JKM, da Silva J, Paz-Ferreiro J (2019) Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 344:31–39. https://doi.org/10.1016/j.geoderma.2019.01.052

    Article  CAS  Google Scholar 

  48. Na W (2015) Utilization of Portland cement and municipal solid waste incineration fly ash for solidification/stabilization of sewage sludge. Nat Environ Pollut Technol 14(1):141

    CAS  Google Scholar 

  49. Vishwakarma V, Uthaman S (2020) Environmental impact of sustainable green concrete. In: Smart nanoconcretes and cement-based materials. Elsevier, Amsterdam, pp 241–255

    Google Scholar 

  50. Kohli R, Mittal KL (2019) Chapter 3: Methods for assessing surface cleanliness. In: Developments in surface contamination and cleaning, vol 12. Elsevier, pp 23–105. https://doi.org/10.1016/B978-0-12-816081-7.00003-6

    Chapter  Google Scholar 

  51. Torri S (2009) Feasibility of using a mixture of sewage sludge and incinerated sewage sludge as a soil amendment. In: Sludge: types, treatment processes and disposal. Nova Science, Hauppauge, pp 187–208

    Google Scholar 

  52. Hashemifard SA, Khosravi A, Abdollahi F, Alihemati Z, Rezaee M (2020) Synthetic polymeric membranes for gas and vapor separations. In: Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainability. Elsevier, Amsterdam, pp 217–272

    Google Scholar 

  53. Parvez K (2019) Characterization techniques of two-dimensional nanomaterials. In: Biomedical applications of graphene and 2D nanomaterials. Elsevier, Amsterdam, pp 27–41

    Google Scholar 

  54. Patel JP, Parsania PH (2018) Characterization, testing, and reinforcing materials of biodegradable composites. In: Biodegradable and biocompatible polymer composites. Elsevier, Amsterdam, pp 55–79

    Google Scholar 

  55. Boutchich GEK, Tahiri S, Mahi M, Gallart-Mateu D, de la Guardia M, Aarfane A, El Krati M (2015) Characterization of activated sludge from domestic sewage treatment plants and their management using composting and co-composting in aerobic silos. J Mater Environ Sci 8:2206–2220

    Google Scholar 

  56. Ahsaine HA, Zbair M, El Haouti R (2017) Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalin Water Treat 85:330–338. https://doi.org/10.5004/dwt.2017.21310

    Article  CAS  Google Scholar 

  57. De Silva GPD, Ranjith PG, Perera MSA, Dai ZX, Yang SQ (2017) An experimental evaluation of unique CO2 flow behaviour in loosely held fine particles rich sandstone under deep reservoir conditions and influencing factors. Energy 119:121–137. https://doi.org/10.1016/j.energy.2016.11.144

    Article  CAS  Google Scholar 

  58. Silica Polymorphs (2015) Optical and SEM images of silica [SiO2] polymorphs (and varieties). http://minerals.caltech.edu/Silica_Polymorphs/. Accessed on 20 Jan 2020

  59. Stepney K, Martin E, Montague G (2012) Multivariate analysis of API particle size distribution variation in a manufacturing environment. In: Computer aided chemical engineering, vol 31. Elsevier, Amsterdam, pp 1140–1144

    Google Scholar 

  60. Das BM (2015) Geotechnical properties of soil. In: Principles of foundation engineering. Cengage Learning, Boston

    Google Scholar 

  61. Khan FS, Azam S, Raghunandan ME, Clark R (2014) Compressive strength of compacted clay-sand mixes. Adv Mater Sci Eng. https://doi.org/10.1155/2014/921815

  62. El-Nahhal IY, Al-Najar HM, El-Nahhal Y (2014) Physicochemical properties of sewage sludge from Gaza. Int J Geosci 5(06). https://doi.org/10.4236/ijg.2014.56053

  63. Liew AG, Idris A, Wong CH, Samad AA, Noor MJM, Baki AM (2004) Incorporation of sewage sludge in clay brick and its characterization. Waste Manag Res 22(4):226–233. https://doi.org/10.1177/0734242X04044989

    Article  CAS  Google Scholar 

  64. O’Kelly BC (2005) Mechanical properties of dewatered sewage sludge. Waste Manag 25(1):47–52. https://doi.org/10.1016/j.wasman.2004.08.003

    Article  CAS  Google Scholar 

  65. Notman CF (2011) Durability testing of fine grained stabilised soils. Doctoral dissertation, University of Nottingham

    Google Scholar 

  66. Wang N, Tsang YF, Chua H, Yi H, Yang Y, Yu CF, Yu PHF (2019) Utilizing different forms of waste sludge in eco-construction material production. In: Environmental sustainability and education for waste management. Springer, Singapore, pp 271–303. https://doi.org/10.1007/978-981-13-9173-6_15

    Chapter  Google Scholar 

  67. Lim S, Jeon W, Lee J, Lee K, Kim N (2002) Engineering properties of water/wastewater-treatment sludge modified by hydrated fattae, fly ash and loess. Water Res 36(17):4177–4184. https://doi.org/10.1016/S0043-1354(02)00150-1

    Article  CAS  Google Scholar 

  68. Kim EH, Cho JK, Yim S (2005) Digested sewage sludge solidification by converter slag for landfill cover. Chemosphere 59(3):387–395. https://doi.org/10.1016/j.chemosphere.2004.10.038

    Article  CAS  Google Scholar 

  69. Chen P, Zhan L, Wilson W (2014) Experimental investigation on shear strength and permeability of a deeply dewatered sewage sludge for use in landfill covers. Environ Earth Sci 71(10):4593–4602. https://doi.org/10.1007/s12665-013-2851-8

    Article  Google Scholar 

  70. Lu J (2015) Identification of forensic information from existing conventional site-investigation data. In: Introduction to environmental forensics. Academic Press, Cambridge, MA, pp 149–164

    Google Scholar 

  71. Hüseyin SARI (2017) The effect of some soil characteristics on the hydraulic conductivity of soil in Tekirdağ Province. Alınteri Zirai Bilimler Dergisi 32(2):95–103

    Google Scholar 

  72. Chung CK, Kim JH, Kim J, Kim T (2018) Hydraulic conductivity variation of coarse-fine soil mixture upon mixing ratio. Adv Civil Eng 2018:6846584

    Google Scholar 

  73. Jaya RP, Yusak MIM, Hainin MR, Mashros N, Warid MNM, Ali MI, Ibrahim MHW (2019) Physical and chemical properties of cement with nano black rice husk ash. In: AIP conference proceedings (vol 2151, no 1). AIP Publishing LLC, New York, p 020024

    Google Scholar 

  74. Aziz HA, Yik WC, Ramli H, Amr SSA (2016) Investigations on the hydraulic conductivity and physical properties of silt and sludge as potential landfill capping material. Int J GEOMATE 10(22):1989–1993. https://doi.org/10.21660/2016.22.5112

    Article  Google Scholar 

  75. Tafreshi SM, Siabil SAG, Dawson AR (2020) Expanded polystyrene geofoam. In: New materials in civil engineering. Butterworth-Heinemann, London, pp 117–153

    Google Scholar 

  76. Kaliakin VN (2017) Chapter 10: Example problems related to shear strength of soils. In: Soil mechanics, pp 419–439. https://doi.org/10.1016/B978-0-12-804491-9.00010-0

    Chapter  Google Scholar 

  77. Xiaojuan Y, Cheng J (2013) Strength characteristics of sludge-MSW mixed land filling and numerical simulation of mixture land filled slope. J Geotech Eng 19:10283–10293

    Google Scholar 

  78. Wang YX, Ding JW, Hong ZS (2011) Compressive strength characteristics and volume change of sewage sludge matrices solidified by a new binder. Adv Mater Res 255:2819–2823. https://doi.org/10.4028/www.scientific.net/AMR.255-260.2819

    Article  CAS  Google Scholar 

  79. Wiśniowska E, Grobelak A, Kokot P, Kacprzak M (2019) Sludge legislation-comparison between different countries. In: Industrial and municipal sludge. Butterworth-Heinemann, London, pp 201–224

    Google Scholar 

  80. ILBS (2019) Environmental Quality Act 1974 (Act 127), regulations, rules & orders: environmental quality (control of pollution from solid waste transfer station and landfill) regulations 2009 (as at 10th June 2019). International Law Book Services, Kuala Lumpur

    Google Scholar 

  81. Hanum F, Yuan LC, Kamahara H, Aziz HA, Atsuta Y, Yamada T, Daimon H (2019) Treatment of sewage sludge using anaerobic digestion in Malaysia: current state and challenges. Front Energy Res 7:19. https://doi.org/10.33389/fenrg.2019.00019

    Article  Google Scholar 

  82. He PJ, Lü F, Zhang H, Shao LM, Lee DJ (2007) Sewage sludge in China: challenges toward a sustainable future. Water Pract Technol 2(4):wpt2007083

    Google Scholar 

  83. USEPA (1994) Land application of sewage sludge: a guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge, 40 CFR part 503. Office of Enforcement and Compliance Assurance, Washington, DC

    Google Scholar 

  84. Ostojski A, Gajewska M (2007) The legal regulations of sewage sludge management. Ecohydrol Hydrobiol 7(3–4):261–266

    Google Scholar 

  85. Kwarciak-Kozłowska A (2019) Co-composting of sewage sludge and wetland plant material from a constructed wetland treating domestic wastewater. In: Industrial and municipal sludge. Butterworth-Heinemann, London, pp 337–360

    Google Scholar 

  86. Ranade VV, Bhandari VM (2014) Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, London

    Google Scholar 

  87. Scholz M (2006) Chapter 23 Sludge treatment and disposal. In: Wetlands systems to control urban runoff. Elsevier, pp 163–174. https://doi.org/10.1016/B978-044452734-9/50026-8

    Chapter  Google Scholar 

  88. Rorat A, Courtois P, Vandenbulcke F, Lemiere S (2019) Sanitary and environmental aspects of sewage sludge management. In: Industrial and municipal sludge. Butterworth-Heinemann, London, pp 155–180

    Google Scholar 

  89. NBP (2011) National biosolids partnership – WEF. Charting the future of biosolids, Prepared by Camp, Dresser and McKee, Inc., Denver. http://www.wef.org/cfbm_finalreport

  90. Darvodelsky P (2012) Biosolids snapshot. Pollution Solutions and Designs Pty Ltd Prepared for the Department of Sustainability, Environment, Water, Population and Communities, Canberra

    Google Scholar 

  91. Milieu Ltd, WRc & RPA (2010) Environmental, economic and social impacts of the use of sewage sludge on land. In: Final report prepared for the European Commission. DG Environment, Brussels

    Google Scholar 

  92. DEFRA (2012) Waste water treatment in the United Kingdom – 2012. Implementation of the European Union urban waste water treatment directive – 91/271/EEC. Department for Environment, Food and Rural Affairs, London. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69592/pb13811-waste-water-012.pdf

  93. Zhang X, Wang XQ, Wang DF (2017) Immobilization of heavy metals in sewage sludge during land application process in China: a review. Sustainability 9(11):2020. https://doi.org/10.3390/su9112020

    Article  CAS  Google Scholar 

  94. Stehouwer R (1999) Land application of sewage sludge in Pennsylvania: use of biosolids in crop production. Cooperative Extension Factsheet, The Pennsylvania State University, State College, PA, USA

    Google Scholar 

  95. AWA (2012) Australian Water Association Position Paper – The Management of Biosolids in Australia. July 2012, New South Wales, Australia. Barber, W.P.

    Google Scholar 

  96. LeBlanc RJ, Matthews P, Richard RP (2008) Global atlas of excreta, wastewater sludge, and biosolids management: moving forward the sustainable and welcome uses of a global resource. UN-Habitat, Nairobi

    Google Scholar 

  97. Shamuyarira KK, Gumbo JR (2014) Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo Province, South Africa. Int J Environ Res Public Health 11(3):2569–2579

    CAS  Google Scholar 

  98. Iticescu C, Georgescu LP, Murariu G, Circiumaru A, Timofti M (2018) The characteristics of sewage sludge used on agricultural lands. In: AIP conference proceedings (vol 2022, no 1). AIP Publishing LLC, New York, p 020001. November

    Google Scholar 

  99. Uçaroğlu S, Alkan U (2016) Composting of wastewater treatment sludge with different bulking agents. J Air Waste Manage Assoc 66(3):288–295

    Google Scholar 

  100. Kosobucki P, Chmarzynski A, Buszewski B (2000) Sewage sludge composting. Pol J Environ Stud 9(4):243–248

    CAS  Google Scholar 

  101. Chen Y (2012) Sewage sludge aerobic composting technology research progress. Aasri Procedia 1:339–343

    Google Scholar 

  102. Matsumiya Y (2014) Green energy production from municipal sewage sludge in Japan. Japan Sewage Works Association. http://gcus.jp/wp/wp-content/uploads/2014/06/ebd9e233be72625b03c96047573177f9.pdf

    Google Scholar 

  103. Hong J, Otaki M, Jolliet O (2009) Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag 29(2):696–703

    CAS  Google Scholar 

  104. JME – Japanese Ministry of the Environment (2008) Fundamental plan for establishing a sound material-cycle society, March 2008, Japan

    Google Scholar 

  105. Wiechmann B, Dienemann C, Kabbe C, Brandt S, Vogel I, Roskosch A (2015) The sewage sludge management in Germany. UBA-Umweltbundesamt. Cited: February 2015 http://www.umweltbundesamt.de/en/publikationen/sewagesludge-management-in-germany

  106. YPEKA (2012) National Greek database of WWTP. Special Water Directorate. http://astikalimata.ypeka.gr/. Last accessed: 13 February 2019

  107. Li Y, Wang H, Zhang J, Wang J, Lan O (2013) Co-processing sewage sludge in cement kiln in China. J Water Resour Prot 5(9):906

    CAS  Google Scholar 

  108. Kosmatka SH, Kerkhoff B, Panarese WC (2011) Design and control of concrete mixtures, 14th edn. Portland Cement Association, Skokie, pp 57–72

    Google Scholar 

  109. Lau PC, Teo DCL, Mannan MA (2017) Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash. Constr Build Mater 152:558–567. https://doi.org/10.1016/j.conbuidmat.2017.07.0

    Article  CAS  Google Scholar 

  110. Anh Tuan BL, Tesfamariam MG, Chen YY, Hwang CL, Lin KL, Young MP (2014) Production of lightweight aggregate from sewage sludge and reservoir sediment for high-flowing concrete. J Constr Eng Manag 140(5):04014005. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000835

    Article  Google Scholar 

  111. Rabie GM (2016) Using of wastewater, dry and wet sludge in the concrete mix. J Civil Environ Eng 6:23. https://doi.org/10.4172/2165-784X.1000209

    Article  Google Scholar 

  112. Chin SC, Ing DS, Kusbiantoro A, Wong YK, Ahmad SW (2016) Characterization of sewage sludge ASH (SSA) in cement mortar. ARPN J Eng Appl Sci 11(2242):e2247

    Google Scholar 

  113. Jamshidi M, Jamshidi A, Mehrdadi N (2012) Application of sewage dry sludge in concrete mixtures. Asian J Civil Eng 13(3):369–379

    Google Scholar 

  114. Pathak AK, Pandey V, Murari K, Singh JP (2014) Soil stabilization using ground granulated blast furnace slag. Int J Eng Res Appl 4:167–171

    Google Scholar 

  115. Widomski MK, Stępniewski W, Musz-Pomorska A (2018) Clays of different plasticity as materials for landfill liners in rural systems of sustainable waste management. Sustainability 10(7):2489. https://doi.org/10.3390/su10072489

    Article  CAS  Google Scholar 

  116. Agamuthu P, Long KB, International Solid Waste Association (2007) Evaluation of landfill cover systems under tropical conditions. Manuscript Reference (07)

    Google Scholar 

  117. Eberemu AO, Amadi AA, Osinubi KJ (2013) The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment applications. Waste Biomass Valoriz 4(2):309–323. https://doi.org/10.1007/s12649-012-9161-3

    Article  CAS  Google Scholar 

  118. NSWEPA (2015) Draft environmental guidelines: solid waste landfills, 2nd edn. NSWEPA, Sydney South

    Google Scholar 

  119. Vinitha VN, Latha P, Jaya V (2019) Permeability study of modified forms of sewage sludge suitable for temporary landfill cover material. In: Recent advances in materials, mechanics and management: proceedings of the 3rd international conference on materials, mechanics and management (IMMM 2017), July 13–15, 2017, Trivandrum, Kerala, India. CRC Press, Boca Raton, p 183. https://doi.org/10.1201/9781351227544-32

    Chapter  Google Scholar 

  120. Fan X, Zhu W, Qian Y, Wu S, Shu S, Lin N (2019a) Increasing the hydraulic conductivity of solidified sewage sludge for use as temporary landfill cover. Adv Civil Eng. https://doi.org/10.1155/2019/8163563

  121. He J, Li F, Li Y, Cui XL (2015a) Modified sewage sludge as temporary landfill cover material. Water Sci Eng 8(3):257262. https://doi.org/10.1016/j.wse.2015.03.003

    Article  Google Scholar 

  122. Ng KT, Lo IM (2007) Mechanical behaviors of a synthetic paste of tire chips and paper sludge in MSW landfill daily cover applications. Can Geotech J 44(8):928–941

    Google Scholar 

  123. Hyun J, Kim MG (2012) Field testing of conversion of sewage sludge to daily landfill cover material. J Mater Cycles Waste Manag 14(1):14–18. https://doi.org/10.1007/s10163-011-0034-9

    Article  CAS  Google Scholar 

  124. Chung HI, Lee YS (2006) Utilization of stabilized and solidified sewage sludge as a daily landfill cover material. KSCE J Civ Eng 10(4):255–258. https://doi.org/10.1007/BF02830779

    Article  Google Scholar 

  125. Liu X, Liu L, Leng P, Hu Z (2019) Feasible and effective reuse of municipal sludge for vegetation restoration: physiochemical characteristics and microbial diversity. Sci Rep 9(1):1–11

    Google Scholar 

  126. Bora RR, Richardson RE, You F (2020) Resource recovery and waste-to-energy from wastewater sludge via thermochemical conversion technologies in support of circular economy: a comprehensive review. BMC Chem Eng 2(1):1–16

    Google Scholar 

  127. ANZBP – Australian, New Zealand Biosolids Partnership (2015) http://www.biosolids.com.au/bs-nz.php/. Accessed: 20 Jan 2021

  128. Chung CS, Choi KY, Kim CJ, Jung JM, Chang YS (2020) Overview of the policies for phasing out ocean dumping of sewage sludge in the Republic of Korea. Sustainability 12(11):4553

    CAS  Google Scholar 

  129. Jegede SI, Osazuwa IB, Ujuanbi O, Chiemeke CC (2011) 2D electrical imaging survey for situation assessment of leachate plume migration at two waste disposal sites in the Zaria basement complex. Adv Appl Sci Res 2(6):1–8

    CAS  Google Scholar 

  130. Fauziah CI, Hanani MN, Zauyah S, Samsuri AW, Rosazlin A (2011) Coapplication of red gypsum and sewage sludge on acidic tropical soils. Commun Soil Sci Plant Anal 42(21):25612571. https://doi.org/10.1080/00103624.2011.614032

    Article  CAS  Google Scholar 

  131. MHLG (2004) The study on the safe closure and rehabilitation of landfill sites in Malaysia. The technical guideline for sanitary landfill, design and operation (revised draft, 2004). Yachiyo Engineering, Tokyo

    Google Scholar 

  132. Artiola JF (2019) Industrial waste and municipal solid waste treatment and disposal. In: Environmental and pollution science. Academic Press, Cambridge, MA, pp 377–391

    Google Scholar 

  133. Burns RS Sr, Burns AT (2019) U.S. Patent Application No. 16/054,710

    Google Scholar 

  134. Zhang D, Wang J, Chen C (2020) Gas and liquid permeability in the variably saturated compacted loess used as an earthen final cover material in landfills. Waste Manag 105:49–60. https://doi.org/10.1016/j.wasman.2020.01.030

    Article  Google Scholar 

  135. Fuller JM (2020) Landfill cap designs using geosynthetic clay liners. In: Geosynthetic clay liners: proceedings of the international symposium, Nuremberg, Germany, 16–17 April 2002. CRC Press, p 129. https://doi.org/10.1201/9781003077848-13

    Chapter  Google Scholar 

  136. EPA (2014) Guidance note on daily and intermediate cover at landfills. Environmental Protection Agency, Johnstown Castle

    Google Scholar 

  137. Fan X, Xu H, Wang S, Shu S, Lin N, Qian Y (2019b) Geotechnical properties of sewage sludge solidified with sulphoaluminate cement. In: E3S web of conferences, vol 81. EDP Sciences, p 01015. https://doi.org/10.1051/e3sconf/2019810105

    Chapter  Google Scholar 

  138. Fauziana A, Ushiyama T, Sayama T (2017) Determination of ZR relationship and inundation analysis for Kuantan river basin. MMD and MOSTI (2)

    Google Scholar 

  139. Environment Agency UK (2010) LFE6-guidance on using landfill cover materials, UK. Environment Agency UK, London

    Google Scholar 

  140. Kim MS, Cha J, Kim DH (2013) Fermentative biohydrogen production from solid wastes. In: Biohydrogen. Elsevier, pp 259–283. https://doi.org/10.1016/B978-0-444-59555-3.00011-8

    Chapter  Google Scholar 

  141. Munasinghe R (1997) Effect of hydraulic retention time on landfill leachate and gas characteristics. Doctoral dissertation, University of British Columbia

    Google Scholar 

  142. Phenrat T, Marhaba TF, Rachakornkij M (2007) XRD and unconfined compressive strength study for a qualitative examination of calcium–arsenic compounds retardation of cement hydration in solidified/stabilized arsenic–iron hydroxide sludge. J Environ Eng 133(6):595–607. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:6(595)

    Article  CAS  Google Scholar 

  143. Ivanova LK, Richards DJ, Smallman DJ (2019) The long-term settlement of landfill waste. In: Proceedings of the institution of civil engineers-waste and resource management (vol 161, no 3). Thomas Telford Ltd, pp 121–133. https://doi.org/10.1680/warm.2008.161.3.121

    Chapter  Google Scholar 

  144. Lu H, Dong Y, Li J, Wang C (2015) The adsorption capacity and geotechnical properties of modified clay containing SSA used as landfill liner-soil materials. J Chem. https://doi.org/10.1155/2015/263095

  145. Chen FH (1975) Chapter 1: Nature of expansive soils. In: Developments in geotechnical engineering, vol 12. Elsevier, pp 1–31. https://doi.org/10.1016/B978-0-444-41393-2.50006-5

    Chapter  Google Scholar 

  146. Kalantari B (2012) Foundations on expansive soils: a review. Res J Appl Sci Eng Technol 4(18):3231–3237

    Google Scholar 

  147. BIS (2004) Classification and identification of soils for general engineering purposes (first revision). Indian Standard 1498–1970, Edition 2, New Delhi, India

    Google Scholar 

  148. Sridharan A, Prakash K (2000) Classification procedures for expansive soils. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 143(4):235–240. https://doi.org/10.1680/geng.2000.143.4.235

    Article  Google Scholar 

  149. Wang GC (2016) The utilization of slag in civil infrastructure construction, 1. https://doi.org/10.1016/C2014-0-03995-0

  150. Kumar P, Singh A (2019) Groundwater contaminant transport modelling for unsaturated media using numerical methods (FEM, FDM). Int J Recent Technol Eng 8(1):1217–1219

    Google Scholar 

  151. Patil SB, Chore HS (2014) Contaminant transport through porous media: an overview of experimental and numerical studies. Adv Environ Res 3(1):45–69. https://doi.org/10.12989/aer.2014.3.1.045

    Article  Google Scholar 

  152. Norouzian K, Abbasi N, Koupai JA (2018) Evaluation of softening of clayey soil stabilized with sewage sludge ash and lime. Civil Eng J 4(4):743–754. https://doi.org/10.28991/cej-0309129

    Article  Google Scholar 

  153. Jalili M, Ghasemi MR, Pifloush AR (2018) Stiffness and strength of granular soils improved by biological treatment bacteria microbial cements. Emerg Sci J 2(4):219–227. https://doi.org/10.28991/esj-2018-01146

    Article  Google Scholar 

  154. Sidek MAH, Yunus RM, Yahaya FM, Baderolhissam MF, Ahmad Khan MAN (2017) Properties of mortar mixed with red gypsum as cement replacement material by using industrial approach method. Aust J Basic Appl Sci 11(13):115–121. https://doi.org/10.22587/ajbas.2017.11.13.13

    Article  CAS  Google Scholar 

  155. Rahmani O, Tyrer M, Junin R (2014) Calcite precipitation from by-product red gypsum in aqueous carbonation process. RSC Adv 4(85):45548–45557. https://doi.org/10.1039/C4RA05910G

    Article  CAS  Google Scholar 

  156. Aziz HA, Wan Kamar WIS (2014) Initial investigation on using copperas by-product to remove colour from domestic wastewater by coagulation and flocculation. Adv Environ Biol 8(14):78–82

    Google Scholar 

  157. Claisse P, Ganjian E, Tyrer M (2008) The use of secondary gypsum to make a controlled low strength material. Open Constr Build Technol J 2(1). https://doi.org/10.2174/1874836800802010294

  158. Azdarpour A, Karaei MA, Hamidi H, Mohammadian E, Honarvar B (2018) CO2 sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum 4(4):398–407. https://doi.org/10.1016/j.petlm.2017.10.002

    Article  Google Scholar 

  159. Gazquez MJ, Bolivar JP, Vaca F, García-Tenorio R, Caparros A (2013) Evaluation of the use of TiO2 industry red gypsum waste in cement production. Cem Concr Compos 37:76–81. https://doi.org/10.1016/j.cemconcomp.2012.12.003

    Article  CAS  Google Scholar 

  160. Tony CSF (2014) Performance of red gypsum as cement replacement in mortar. UMP, Kuantan

    Google Scholar 

  161. Hughes PN, Glendinning S, Manning DAC, Noble BC (2010) Production of ‘green’ concrete using red gypsum and waste. In: Proceedings of the Institution of Civil Engineers-Engineering Sustainability (vol 163, no 3). Thomas Telford Ltd, London, pp 137–146

    Google Scholar 

  162. Zhang XW, Kong LW, Cui XL, Yin S (2016) Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS. Bull Eng Geol Environ 75(4):1493–1503. https://doi.org/10.1007/s10064-015-0781-2

    Article  CAS  Google Scholar 

  163. Gartner E, Maruyama I, Chen J (2017) A new model for the CSH phase formed during the hydration of Portland cements. Cem Concr Res 97:95–106. https://doi.org/10.1016/j.cemconres.2017.03.001

    Article  CAS  Google Scholar 

  164. Arias M, Barral MT, Diaz-Fierros F (1999) Effects of organic matter, iron and aluminium on soil structural stability. In: Effect of mineral-organic-microorganism interactions on soil and freshwater environments. Springer, Boston, pp 79–88. https://doi.org/10.1007/978-1-4615-4683-28

    Chapter  Google Scholar 

  165. Goldberg S, Kapoor BS, Rhoades JD (1990) Effect of aluminum and iron oxides and organic matter on flocculation and dispersion of arid zone soils. Soil Sci 150(3):588–593

    CAS  Google Scholar 

  166. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76(1–3):319–337

    CAS  Google Scholar 

  167. Schmidt H, Paschke I, Freyer D, Voigt W (2011) Water channel structure of bassanite at high air humidity: crystal structure of CaSO4.0.625H2O. Acta Crystallogr Sect B: Struct Sci 67(6):467–475. https://doi.org/10.1107/S0108768111041759

    Article  CAS  Google Scholar 

  168. Hawthorne FC, Ferguson RB (1975) Anhydrous suplhates; II, refinement of the crystal structure of anhydrite. Can Miner 13(3):289–292

    Google Scholar 

  169. Schofield PF, Knight KS, Stretton IC (1996) Thermal expansion of gypsum investigated by neutron powder diffraction. Am Mineral 81(7–8):847–851. https://doi.org/10.2138/am-1996-7-807

    Article  CAS  Google Scholar 

  170. Gázquez MJ, Bolívar JP, García-Tenorio R, Vaca F (2009) Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J Hazard Mater 166(2):1429–1440. https://doi.org/10.1016/j.jhazmat.2008.12.067

    Article  CAS  Google Scholar 

  171. Mahazam N, Azmi MNS (2016) Evaluation of physical and chemical properties of red gypsum from Terengganu. Int J Eng Res Technol 5(1):433–436

    Google Scholar 

  172. August AE, Noble BC, Tooze JF (2004) Red gypsum in civil engineering applications. Patent no. EP1474367 Access online on January 2017 at http://www.freepatentsonline.com/EP1474367A1.html

  173. Lawrence CD (1998) The constitution and specification of Portland cements. In: Lea’s chemistry of cement and concrete. Butterworth-Heinemann, London, pp 131–193

    Google Scholar 

  174. Zanin M, Lambert H, du Plessis CA (2019) Lime use and functionality in sulphide mineral flotation: a review. Miner Eng 143:105922

    CAS  Google Scholar 

  175. Neuwald A (2004) Supplementary cementitious materials, part I: Pozzolanic SCM’s, Precast Inc. Magazine, September

    Google Scholar 

  176. Dan E, Janotka I (2003) Chemical resistance of Portland cement, blast-furnace slag Portland cement and sulphoaluminate-belite cement in acid, chloride and sulphate solution: some preliminary results. Ceram Silik 47(4):141–148

    CAS  Google Scholar 

  177. Guda S (2016) Efficacy of cement-stabilized GBS and GGBS cushions in improving the performance of expansive soils. Jordan J Civil Eng 10(4):529–542

    Google Scholar 

  178. Wilkinson A, Haque A, Kodikara J (2010) Stabilisation of clayey soils with industrial by-products: part A. Proc Inst Civil Eng Ground Improv 163(3):149–163

    Google Scholar 

  179. Osinubi KJ (2006) Influence of compactive efforts on lime-slag treated tropical black clay. J Mater Civ Eng 18(2):175–181

    CAS  Google Scholar 

  180. Indraratna B (1996) Utilization of lime, slag and fly ash for improvement of a colluvial soil in New South Wales Australia. Geotechn Geol Eng 14(3):169–191

    Google Scholar 

  181. Wild S, Kinuthia JM, Jones GI, Higgins DD (1998) Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Eng Geol 51(1):37–53

    Google Scholar 

  182. Nagendra V, Sashidhar C, Kumar SP, Ramana NV (2016) Particle size effect of ground granulated blast furnace slag (GGBS) in cement concrete. Int J Res Trends Eng Res 2(8):6–10

    Google Scholar 

  183. Fattah MY, Al-Saidi ÀA, Jaber MM (2015) Characteristics of clays stabilized with lime-silica fume mix. Ital J Geosci 134(1):104–113

    Google Scholar 

  184. Köksal F, Altun F, Yiğit İ, Şahin Y (2008) Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr Build Mater 22(8):1874–1880

    Google Scholar 

  185. Mohamed HA (2011) Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Eng J 2(2):79–86

    Google Scholar 

  186. Campos HF, Klein NS, Marques Filho J (2020) Comparison of the silica fume content for high-strength concrete production: chemical analysis of the pozzolanic reaction and physical behavior by particle packing. Mater Res 23(5). https://doi.org/10.1590/1980-5373-MR-2020-0285

  187. Verma A, Chandak R, Yadav RK (2013) A review for characterization of silica fume and its effect on concrete with pozzolonic Portland cement. Int J Sci Eng Res 4(1). ISSN 2229-5518

    Google Scholar 

  188. Panjehpour M, Ali AAA, Demirboga R (2011) A review for characterization of silica fume and its effects on concrete properties. Int J Sust Constr Eng Technol 2(2):1–7

    Google Scholar 

  189. Costa C, Gonçalves MC, Margarido F (eds) (2015) Hydraulic binders – materials for construction and civil engineering: science, processing, and design. Springer, Cham, pp 1–52

    Google Scholar 

  190. Fu TC, Yeih W, Chang JJ, Huang R (2014) The influence of aggregate size and binder material on the properties of pervious concrete. Adv Mater Sci Eng 2014:963971

    Google Scholar 

  191. Sekar PK (2016) Nominal mix concrete – material calculation. Online access at http://civilrnd.com/calculate-cement-sand-and-aggregate-for-nominal-mix-concrete/on 14 Dec 2019

  192. Bose A (1995) The particulate injection Molding process. Advanced in particulate materials. Butterworth-Heinemann, London, p 312

    Google Scholar 

  193. Bawa HS (2006) Binders used in moulding Sands. In: Manufacturing processes II. Tata McGraw-Hill Publishing Company Limited, New Delhi, pp 27–28

    Google Scholar 

  194. Iffat S (2015) Relation between density and compressive strength of hardened concrete. Concr Res Lett 6(4):182–189

    CAS  Google Scholar 

  195. Gan MSJ (1997) Hydration of cement – setting reactions. In: Cement and concrete. CRC Press, Boca Raton, pp 36–50

    Google Scholar 

  196. Winter N (2012) Hydration of cement: chemical and physical properties of cementitious materials. In: Understanding Cement. WHD Microanalysis Consultants Ltd, London

    Google Scholar 

  197. Harvey D (2010) Cement: industrial energy use. In: Energy and the new reality 1-energy efficiency and the demand for energy services. Routledge, London

    Google Scholar 

  198. Dawood AO (2012) Hydration of cement. In: Concrete Technology. University Science Press, Delhi

    Google Scholar 

  199. MIT CSHub, Portland Cement Association, National Ready Mixed Concrete Association (2013) Improving concrete sustainability through Alite and Belite reactivity. MIT Concrete Sustainability Hub, Concrete Science Platform White Paper

    Google Scholar 

  200. Zeng Q, Li K, Fen-chong T, Dangla P (2012) Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr Build Mater 27(1):560–569

    Google Scholar 

  201. Dunstan ER (2011) How does pozzolanic reaction make concrete green? In: World of Coal Ash (WOCA) conference, May 9–12, pp 1–14

    Google Scholar 

  202. The Constructor (2015) Shrinkage on concrete from drying. Reducing drying shrinkage in concrete. Access online at http://theconstructor.org/concrete/reducing-drying-shrinkage-in-concrete/5935/ on 8 Feb 2017

  203. Meddah MS, Zitouni S, Belâabes S (2010) Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater 24(4):505–512

    Google Scholar 

  204. Basham K (2010) Minimize shrinkage, minimize cracking. Access online at http://www.forconstructionpros.com/article/10116785/minimize-shrinkage-minimize-cracking on 8 Feb 2017

  205. Alexander M, Mindess S (2010) Aggregates in concrete. CRC Press, Boca Raton

    Google Scholar 

  206. Papenfus N (2003) Applying concrete technology to abrasion resistance. In Proceedings 7th international conference on concrete block paving, October, pp 1–10

    Google Scholar 

  207. Siddique R (2003) Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cem Concr Res 33(4):539–547

    CAS  Google Scholar 

  208. Suryakanta (2014) How to classify aggregates according to size? Aggregate, concrete technology, materials. Access online at http://civilblogorg/2014/07/07/how-to-classify-aggregates-according-to-size/ on 13 Feb 2017

  209. British Geological Survey (2013) Construction aggregate. Mineral Planning Factsheet, UK

    Google Scholar 

  210. Seegebrecht G (2016) The role of aggregate in concrete. ConcreteNetwork.com. Access online at http://www.concretenetwork.com/aggregate/ on 2 Dec 2016

  211. Zurale MM, Bhide SJ (1998) Properties of fillers and reinforcing fibers. Mech Compos Mater 34(5):463–472

    CAS  Google Scholar 

  212. Elyamany HE, Elmoaty AEMA, Mohamed B (2014) Effect of filler types on physical, mechanical and microstructure of self compacting concrete and flow-able concrete. Alex Eng J 53(2):295–307

    Google Scholar 

  213. Bederina M, Makhloufi Z, Bouziani T (2011) Effect of limestone fillers the physic-mechanical properties of limestone concrete. Phys Procedia 21:28–34

    CAS  Google Scholar 

  214. Topçu IB, Uğurlu A (2003) Effect of the use of mineral filler on the properties of concrete. Cem Concr Res 33(7):1071–1075

    Google Scholar 

  215. Givi AN, Rashid SA, Aziz FNA, Salleh MAM (2010) Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Constr Build Mater 24(11):2145–2150

    Google Scholar 

  216. Rasol MA (2015) Effect of silica fume on concrete properties and advantages for Kurdistan region, Iraq. Int J Sci Eng Res 6(1):170–173

    Google Scholar 

  217. De Schutter G (2011) Effect of limestine filler as mineral addition in self-compacting concrete. In: Proceedings of the 36th conference on our world in concrete & structures, August

    Google Scholar 

  218. Wang Y (2013) Performance assessment of cement-based materials blended with micronized sand: microstructure, durability and sustainability. Delft University of Technology, Delft

    Google Scholar 

  219. Jennings H, Thomas J (2008) Overview of the hydration process. The science of concrete. Access online at http://iti.northwestern.edu/cement/monograph/Monograph5_1.html on 27 Dec 2016

  220. Moosberg-Bustnes H, Lagerblad B, Forssberg E (2004) The function of fillers in concrete. Mater Struct 37(2):74–81

    Google Scholar 

  221. Nura (2008) Chapter 1 introduction (fillers). In: Polymer and fillers. Access online at http://polymer-fillerblogspotmy/2008/08/chapter-1-introduction-fillershtml on 22 Feb 2017

    Google Scholar 

  222. Katz HS, Mileski JV (1987) Handbook of fillers for plastics. Springer, Berlin

    Google Scholar 

  223. Wypych G (2016) Handbook of fillers. Elsevier, Berlin

    Google Scholar 

  224. Hunt SA, Whitaker ML, Bailey E, Mariani E, Stan CV, Dobson DP (2019) An experimental investigation of the relative strength of the silica polymorphs quartz, coesite, and stishovite. Geochem Geophys Geosyst. https://doi.org/10.1029/2018GC007842

  225. Dultz S, Woche SK, Mikutta R, Schrapel M, Guggenberger G (2019) Size and charge constraints in microaggregation: model experiments with mineral particle size fractions. Appl Clay Sci 170:29–40. https://doi.org/10.1016/j.clay.2019.01.002

    Article  CAS  Google Scholar 

  226. Walworth J (2012) Using gypsum and other calcium amendments in southwestern soils. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1413.pdf. Accessed on 18 Apr 2019

  227. Bigham J (2013) The effect of calcium on soil physical properties and air-water management. 3rd annual Midwest soil improvement symposium: research and practical insights into using gypsum

    Google Scholar 

  228. Mudavath K (2018) Increase in strength of concrete with age. https://wecivilengineers.blog/increase-in-strength-of-concrete-with-age/. Accessed on 19 Mar 2019

  229. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for Portland cement clinker production. J Hazard Mater 152(2):805–811. https://doi.org/10.1016/j.jhazmat.2007.07.093

    Article  CAS  Google Scholar 

  230. Sikora P, Cendrowski K, Abd Elrahman M, Chung SY, Mijowska E, Stephan D (2019) The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica. Appl Nano:1–12. https://doi.org/10.1007/s13204-019-00993-8

  231. El-Gamal SMA, Amin MS, Ramadan M (2017) Hydration characteristics and compressive strength of hardened cement pastes containing nano-metakaolin. HBRC J 13(1):114–121. https://doi.org/10.1016/j.hbrcj.2014.11.008

    Article  Google Scholar 

  232. Ángeles G, De Vera RN, Cuberos AJ, Aranda MA (2008) Crystal structure of low magnesium-content alite: application to Rietveld quantitative phase analysis. Cem Concr Res 38(11):1261–1269. https://doi.org/10.1016/j.cemconres.2008.06.005

    Article  CAS  Google Scholar 

  233. Merlino S, Bonaccorsi E, Armbruster T (2000) The real structures of clinotobermorite and tobermorite 9 A: OD character, polytypes, and structural relationships. Eur J Mineral 12(2):411–429

    CAS  Google Scholar 

  234. Henderson DM, Gutowsky HS (1962) A nuclear magnetic resonance determination of the hydrogen positions in Ca (OH) 2. Am Mineral J Earth Planet Mater 47(11–12):1231–1251

    CAS  Google Scholar 

  235. Fytianos K, Charantoni E, Voudrias E (1998) Leaching of heavy metals from municipal sewage sludge. Environ Int 24(4):467–475

    CAS  Google Scholar 

  236. Gawdzik J, Gawdzik B (2012) Mobility of heavy metals in municipal sewage sludge from different throughput sewage treatment plants. Pol J Environ Stud 21(6):1603–1611

    CAS  Google Scholar 

  237. Lu C, Lu J, Zhang Y, Puckett MH (2019) A convenient method to estimate soil hydraulic conductivity using electrical conductivity and soil compaction degree. J Hydrol 575:211–220. https://doi.org/10.1016/j.jhydrol.2019.05.034

    Article  Google Scholar 

  238. Scarcella GE, Giusti I, Giusti S, Lo Presti D (2017) Laboratory testing on compacted, partially saturated silty and sandy soils. Russ J Constr Sci Technol 3(2):13–27. https://doi.org/10.15826/rjcst.2017.2.002

    Article  Google Scholar 

  239. Chenari RJ, Tizpa P, Rad MRG, Machado SL, Fard MK (2015) The use of index parameters to predict soil geotechnical properties. Arab J Geosci 8(7):4907–4919. https://doi.org/10.1007/s12517-014-1538-0

    Article  Google Scholar 

  240. Pal SK, Ghosh A (2011) Compaction and hydraulic conductivity characteristics of Indian fly ashes. In: Proceedings of Indian geotechnical conference

    Google Scholar 

  241. Umar SY, Elinwa AU, Matawal DS (2015) Hydraulic conductivity of compacted lateritic soil partially replaced with metakaolin. J Environ Earth Sci 5(4):53–64

    CAS  Google Scholar 

  242. Ghosh A, Subbarao C (1998) Hydraulic conductivity and leachate characteristics of stabilized fly ash. J Environ Eng 124(9):812–820. https://doi.org/10.10661/[ASCE]0733-9372[1998]124:9[812]

    Article  CAS  Google Scholar 

  243. Edil TB, Sandstrom LK, Berthouex PM (1992) Interaction of inorganic leachate with compacted pozzolanic fly ash. J Geotech Eng 118(9):1410–1430. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1410)

    Article  Google Scholar 

  244. Wang G, Gao Y, Tang Y (2017b) Research on the mechanism for chemical clogging and its effect on the stability of tailing dam. Bulg Chem Commun 49(1):228–233

    Google Scholar 

  245. Huysmans M, Dassargues A (2005) Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeol J 13(5–6):895–904. https://doi.org/10.1007/s10040-004-0387-4

    Article  Google Scholar 

  246. Bruno AW, Gallipoli D, Perlot C, Mendes J (2016) Effect of very high compaction pressures on the physical and mechanical properties of earthen materials. In: E3S web of conferences, September, vol 9. EDP Sciences, p 14004. https://doi.org/10.1051/e3sconf/2016914004

    Chapter  Google Scholar 

  247. Adeyeri JB (2018) Compression. In: Encyclopedia of engineering geology, pp 170–179. https://doi.org/10.1007/978-3-319-73568-9_63

    Chapter  Google Scholar 

  248. Kazi M, Shukla SK, Habibi D (2015) Effect of submergence on settlement and bearing capacity of surface strip footing on geotextile-reinforced sand bed. Int J Geosynth Ground Eng 1(1):4. https://doi.org/10.1007/s40891-014-0006-y

    Article  Google Scholar 

  249. Nie RS, Leng WM, Yang Q, Chen YF, Xu F (2018) Comparison and evaluation of railway subgrade quality detection methods. Proc Inst Mech Eng F J Rail Rapid Transit 232(2):356–368. https://doi.org/10.1177/0954409716671551

    Article  Google Scholar 

  250. Lee S, Chang I (2019) Microscopic investigation of interparticle-interaction between sand particles and biopolymer. In 13th Australia New Zealand conference on geomechanics, Acosta-Martinez and Lehane (Eds.). Australian Geomechanics Society, Sydney, Australia. pp 705–708

    Google Scholar 

  251. Yusoff SANM, Bakar I, Wijeyesekera DC, Zainorabidin A, Azmi M, Ramli H (2017) The effects of different compaction energy on geotechnical properties of kaolin and laterite. In: AIP conference proceedings (vol 1875, no 1). AIP Publishing LLC, New York, p 030009. https://doi.org/10.1063/1.4998380

    Chapter  Google Scholar 

  252. Khaidapova DD, Pestonova EA (2007) Strength of interparticle bonds in soil pastes and aggregates. Eurasian. Soil Sci 40(11):1187–1192. https://doi.org/10.1134/S1064229307110063

    Article  Google Scholar 

  253. Wang LK, Pereira NC, Hung YT (2009) Biological treatment processes. Humana Press, Totowa, 818 pages

    Google Scholar 

  254. Wang LK, Shammas NK, Hung YT (2009) Advanced biological treatment processes. Humana Press, Totowa, 737 pages

    Google Scholar 

  255. Wang LK, Shammas NK, Hung YT (2007) Biosolids treatment processes. Humana Press, Totowa, 820 pages

    Google Scholar 

  256. Wang LK, Shammas NK, Hung YT (2008) Biosolids engineering and management. Humana Press, Totowa, 800 pages

    Google Scholar 

  257. Wang LK, Ivanov V, Tay JH, Hung YT (2010) Environmental biotechnology. Humana Press, Totowa, 974 pages

    Google Scholar 

  258. Wang LK, Tay JH, Lee ST, Hung YT (2010) Environmental biotechnology. Humana Press, Totowa, 867 pages

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azalina Rosli .

Editor information

Editors and Affiliations

Glossary

Glossary

Composting:

A biological decomposition of solid organic materials by bacteria, fungi, and other organisms into a soil-like product.

Heavy Metals:

Trace elements whose concentrations are regulated because of the potential toxicity to humans, animals or plants (includes copper, nickel, cadmium, lead, mercury and zinc if present in excessive amounts).

Hydraulic Binder:

Substances that chemically react with water, by converting the water-binder system with plastic consistency into a solid matrix with the ability to agglomerate other solid materials.

Incineration:

A process of burning solid waste under controlled conditions to reduce its weight and volume, and often to produce energy.

Pyrolysis:

Chemical decomposition of a substance by heat in the absence of oxygen, resulting in various hydrocarbon gases and carbon-like residue.

Recycling:

The process of transforming materials into raw materials for manufacturing new products, which may or may not be similar to the original product.

Sanitary Landfill:

An engineered method for disposing solid waste on land, in a manner that meets most of the standard specifications, including siting, proper leachate and gas management, monitoring, landfill cover, complete access control, and record-keeping.

Secure Landfill:

A disposal facility designed to permanently isolate wastes from the environment which entails burial of the wastes in a landfill that includes clay or synthetic liners, leachate collection, gas collection, and impermeable cover.

Sewage Sludge:

Sewage sludge is a mixture of solids and water produced during the treatment of wastewater or sewage.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosli, N.A., Aziz, H.A., Selamat, M.R., Pueh, L.L.L., Hung, YT. (2022). Sewage Sludge Recycling and Disposal. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-89336-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89336-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89335-4

  • Online ISBN: 978-3-030-89336-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics