Skip to main content
Log in

Valorization of Mexican Ricinus communis L. Leaves as a Source of Minerals and Antioxidant Compounds

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This research aimed to characterize the physicochemical and nutraceutical composition from two Mexican R. communis L. leaves accessions (R1 and R2) to valorize their use as a source of macromolecules, minerals, and bioactive compounds.

Methods

The physicochemical (proximal composition, X-ray fluorescence and diffraction, FT-IR, and SEM) and nutraceutical composition (phenolic compounds and mono/oligosaccharides, GC–MS, untargeted metabolomics, and in silico interactions) were conducted for the analysis of the leaves.

Results

Both accessions exhibited a high amount of protein (41.70–39.58%) and ash (11.81–12.51%). The untargeted metabolomic profiled a major impact on antioxidative pathways. Compared to R1, R2 showed a higher (p < 0.05) content of ellagic and p-coumaric acids and catechin. Correlations with the in vitro antioxidant capacity and in silico analysis suggested ellagic acid, (+)-catechin, and ricin as candidates for the antioxidant potential. The mineral characterization highlighted calcium and potassium as the most abundant minerals, both confirmed by the SEM analysis. The FTIR spectra of the leaves partially identified the presence of ricin and ricinine, major protein and alkaloid, respectively, of the leaves.

Conclusion

These results indicate that R. communis L. leaves are an attractive by-product that can serve as an alternative source for the obtention of protein, minerals, and antioxidant compounds.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Additional data and material are available upon request of reviewers and editors.

References

  1. Ogunniyi, D.S.: Castor oil: a vital industrial raw material. Bioresour. Technol. 97, 1086–1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028

    Article  Google Scholar 

  2. Perdomo, F.A., Acosta-Osorio, A.A., Herrera, G., Vasco-Leal, J.F., Mosquera-Artamonov, J.D., Millan-Malo, B., Rodriguez-Garcia, M.E.: Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass Bioenergy. 48, 17–24 (2013). https://doi.org/10.1016/j.biombioe.2012.10.020

    Article  Google Scholar 

  3. Vasco-Leal, J.F., Mosquera-Artamonov, J.D., Hernández-Rios, I., Méndez-Gallegos, S.J., Perea-Flores, M.J., Peña-Aguilar, J.M., Rodríguez-García, M.E.: Physicochemical characteristics of seeds from wild and cultivated castor bean plants (Ricinus communis L.) Características fisicoquímicas de semillas de plantas de higuerilla. Ing. Investig. 38, 24–30 (2018). https://doi.org/10.15446/ing.investig.v38n1.63453

    Article  Google Scholar 

  4. Mosquera-Artamonov, J.D., Vasco-Leal, J.F., Acosta-Osorio, A.A., Hernández-Ríos, I., Ventura-Ramos, E., Gutiérrez-Cortez, E., Rodríguez-García, M.E.: Optimization of castor seed oil extraction process using response surface methodology. Ing. Investig. 36, 82–88 (2016). https://doi.org/10.15446/ing.investig.v36n3.55632

    Article  Google Scholar 

  5. Isaza, C., Anaya, K., de Paz, J.Z., Vasco-Leal, J.F., Hernandez-Rios, I., Mosquera-Artamonov, J.D.: Image analysis and data mining techniques for classification of morphological and color features for seeds of the wild castor oil plant (Ricinus communis L.). Multimed. Tools Appl. 77, 2593–2610 (2017). https://doi.org/10.1007/s11042-017-4438-y

    Article  Google Scholar 

  6. Scholz, V., da Silva, J.N.: Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32, 95–100 (2008). https://doi.org/10.1016/j.biombioe.2007.08.004

    Article  Google Scholar 

  7. Chen, G.Q., Johnson, K., Morales, E., Ibáñez, A.M., Lin, J.T.: A high-Oil castor cultivar developed through recurrent selection. Ind. Crops Prod. 111, 8–10 (2018). https://doi.org/10.1016/j.indcrop.2017.09.064

    Article  Google Scholar 

  8. López-Ordaz, P., Chanona-Pérez, J.J., Perea-Flores, M.J., Sánchez-Fuentes, C.E., Mendoza-Pérez, J.A., Arzate-Vázquez, I., Yáñez-Fernández, J., Torres-Ventura, H.H.: Effect of the extraction by thermosonication on castor oil quality and the microstructure of its residual cake. Ind. Crops Prod. 141, 111760 (2019). https://doi.org/10.1016/j.indcrop.2019.111760

    Article  Google Scholar 

  9. Sehgal, P., Khan, M., Kumar, O., Vijayaraghavan, R.: Purification, characterization and toxicity profile of ricin isoforms from castor beans. Food Chem. Toxicol. 48, 3171–3176 (2010). https://doi.org/10.1016/j.fct.2010.08.015

    Article  Google Scholar 

  10. Akande, T.O., Odunsi, A.A., Akinfala, E.O.: A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J. Anim. Physiol. Anim. Nutr. (Berl) 100, 201–210 (2016). https://doi.org/10.1111/jpn.12360

    Article  Google Scholar 

  11. Wafa, G., Amadou, D., Larbi, K.M., Héla, E.F.O.: Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L. Ind. Crops Prod. 56, 43–51 (2014). https://doi.org/10.1016/j.indcrop.2014.02.036

    Article  Google Scholar 

  12. Naz, R., Bano, A.: Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pac. J. Trop. Biomed. 2, 944–947 (2012). https://doi.org/10.1016/S2221-1691(13)60004-0

    Article  Google Scholar 

  13. Taur, D.J., Waghmare, M.G., Bandal, R.S., Patil, R.Y.: Antinociceptive activity of Ricinus communis L. leaves. Asian Pac. J. Trop. Biomed. 1, 139–141 (2011). https://doi.org/10.1016/S2221-1691(11)60012-9

    Article  Google Scholar 

  14. Mamoucha, S., Tsafantakis, N., Fokialakis, N., Christodoulakis, N.S.: Structural and phytochemical investigation of the leaves of Ricinus communis. Aust. J. Bot. 65, 58–66 (2016). https://doi.org/10.1071/BT16184

    Article  Google Scholar 

  15. Secretaría de Energía: DOF 01-02-2008: Decreto por el que se expide la Promoción y el Desarrollo de los Bioenergéticos

  16. Abbas, M., Ali, A., Arshad, M., Atta, A., Mehmood, Z., Tahir, I.M., Iqbal, M.: Mutagenicity, cytotoxic and antioxidant activities of Ricinus communis different parts. Chem. Cent. J. 12, 3 (2018). https://doi.org/10.1186/s13065-018-0370-0

    Article  Google Scholar 

  17. Tamayo Tenorio, A., Gieteling, J., de Jong, G.A.H., Boom, R.M., van der Goot, A.J.: Recovery of protein from green leaves: Overview of crucial steps for utilisation. Food Chem. 203, 402–408 (2016). https://doi.org/10.1016/j.foodchem.2016.02.092

    Article  Google Scholar 

  18. Lukova, P., Nikolova, M., Petit, E., Elboutachfaiti, R., Vasileva, T., Katsarov, P., Manev, H., Gardarin, C., Pierre, G., Michaud, P., Iliev, I., Delattre, C.: Prebiotic activity of poly- and oligosaccharides obtained from Plantago major L. Leaves. Appl. Sci. 10, 2648 (2020). https://doi.org/10.3390/app10082648

    Article  Google Scholar 

  19. Kiran, B.R., Prasad, M.N.V.: Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. EuroBiotech J. 1, 101–116 (2017). https://doi.org/10.24190/ISSN2564-615X/2017/02.01

    Article  Google Scholar 

  20. Tadayyon, A., Nikneshan, P., Pessarakli, M.: Effects of drought stress on concentration of macro- and micro-nutrients in Castor (Ricinus communis L.) plant. J. Plant Nutr. 41, 304–310 (2018). https://doi.org/10.1080/01904167.2017.1381126

    Article  Google Scholar 

  21. AOAC: Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg (2002)

  22. Sarker, U., Hossain, M.M., Oba, S.: Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 10, 1336 (2020). https://doi.org/10.1038/s41598-020-57687-3

    Article  Google Scholar 

  23. Sarker, U., Oba, S.: Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in Amaranthus blitum leafy vegetables. Sci. Rep. 10, 3868 (2020). https://doi.org/10.1038/s41598-020-59848-w

    Article  Google Scholar 

  24. Deshpande, S.S., Cheryan, M.: Evaluation of vanillin assay for tannin analysis of dry beans. J. Food Sci. 50, 905–910 (1985). https://doi.org/10.1111/j.1365-2621.1985.tb12977.x

    Article  Google Scholar 

  25. Sarker, U., Oba, S.: Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci. Rep. 9, 18233 (2019). https://doi.org/10.1038/s41598-019-52033-8

    Article  Google Scholar 

  26. Muzquiz, M., Burbano, C., Pedrosa, M.M., Folkman, W., Gulewicz, K.: Lupins as a potential source of raffinose family oligosaccharides: Preparative method for their isolation and purification. Ind. Crops Prod. 9, 183–188 (1999). https://doi.org/10.1016/S0926-6690(98)00030-2

    Article  Google Scholar 

  27. Aguillón-Osma, J., Luzardo-Ocampo, I., Cuellar-Nuñez, M.L., Maldonado-Celis, M.E., Loango-Chamorro, N., Campos-Vega, R.: Impact of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of bioactive compounds from Passion fruit (Passiflora edulis) leaves and juice extracts. J. Food Biochem. 43, e12879 (2019). https://doi.org/10.1111/jfbc.12879

    Article  Google Scholar 

  28. Hussein, O.H., Hadi, H.I., Kareem, M.A.: Determination of alkaloid compounds of Ricinus communis by using gas chromatography–mass spectroscopy (GC–MS). J. Med. Plants Res. 9, 349–359 (2015). https://doi.org/10.5897/JMPR2015.5750

    Article  Google Scholar 

  29. Wang, J.-X., Jiang, D.-Q., Gu, Z.-Y., Yan, X.-P.: Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J. Chromatogr. A 1137, 8–14 (2006). https://doi.org/10.1016/j.chroma.2006.10.003

    Article  Google Scholar 

  30. Gertsman, I., Barshop, B.A.: Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 41, 355–366 (2018). https://doi.org/10.1007/s10545-017-0130-7

    Article  Google Scholar 

  31. Lê Cao, K.A., Boitard, S., Besse, P.: Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. (2011). https://doi.org/10.1186/1471-2105-12-253

    Article  Google Scholar 

  32. Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., Wishart, D.S.: ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 8, 61 (2016). https://doi.org/10.1186/s13321-016-0174-y

    Article  Google Scholar 

  33. Sarker, U., Oba, S., Daramy, M.A.: Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci. Rep. 10, 3892 (2020). https://doi.org/10.1038/s41598-020-60252-7

    Article  Google Scholar 

  34. Sarker, U., Oba, S.: Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 9, 20413 (2019). https://doi.org/10.1038/s41598-019-50977-5

    Article  Google Scholar 

  35. Luna-Vital, D., Weiss, M., Gonzalez de Mejia, E.: Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Mol. Nutr. Food Res. 61, 1–41 (2017). https://doi.org/10.1002/mnfr.201700362

    Article  Google Scholar 

  36. Trott, O., Olson, A.: Autodock vina: improving the speed and accuracy of docking. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334.AutoDock

    Article  Google Scholar 

  37. El-Naggar, M.H., Abdel Bar, F.M., Choudhary, H., Javadi, M., Shimizu, K., Kunnumakkara, A.B., Badria, F.A.: Synthesis of new selective cytotoxic ricinine analogues against oral squamous cell carcinoma. Nat. Prod. Res. (2019). https://doi.org/10.1080/14786419.2019.1663513

    Article  Google Scholar 

  38. Ladda, P.L., Kamthane, R.B.: Ricinus communis (Castor): An overview. Int. J. Res. Pharmacol. Pharmacother. 3, 136–144 (2014)

    Google Scholar 

  39. Ghulam, D., Farrukh, H., Khattak, F., Khanzadi, F.: Proximate analysis of plants of family Zygophyllaceae and Euphorbiaceae during winter. Sarhad J. Agric. 29, 395–401 (2013)

    Google Scholar 

  40. Lara, C., Del-Viento, A., Palma, J.M.: Preferencia y consumo de diferentes partes morfológicas de Ricinus communis L. (higuerilla) por ovinos. Av. Investig. Agropecu. 20, 45–32 (2016)

    Google Scholar 

  41. Rampadarath, S., Puchooa, D., Ranghoo-Sanmukhiya, V.M.: A comparison of polyphenolic content, antioxidant activity and insecticidal properties of Jatropha species and wild Ricinus communis L found in Mauritius. Asian Pac. J. Trop. Med. 7, S384–S390 (2014). https://doi.org/10.1016/S1995-7645(14)60263-7

    Article  Google Scholar 

  42. Caicedo-Lopez, L.H., Luzardo-Ocampo, I., Cuellar-Nuñez, M.L., Campos-Vega, R., Mendoza, S., Loarca-Piña, G.: Effect of the in vitro gastrointestinal digestion on free-phenolic compounds and mono/oligosaccharides from Moringa oleifera leaves: bioaccessibility, intestinal permeability and antioxidant capacity. Food Res. Int. 120, 631–642 (2019). https://doi.org/10.1016/j.foodres.2018.11.017

    Article  Google Scholar 

  43. Horáková, Ľ.: Flavonoids in prevention of diseases with respect to modulation of Ca-pump function. Interdiscip. Toxicol. 4, 114–124 (2011). https://doi.org/10.2478/v10102-011-0019-5

    Article  Google Scholar 

  44. Suurbaar, J., Mosobil, R., Donkor, A.-M.: Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Res. Notes. 10, 660 (2017). https://doi.org/10.1186/s13104-017-3001-2

    Article  Google Scholar 

  45. Singh, P.P.A., Chauhan, S.M.S.: Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem. 114, 1069–1072 (2009). https://doi.org/10.1016/j.foodchem.2008.10.020

    Article  Google Scholar 

  46. Ghosh, S., Tiwari, S.S., Srivastava, S., Sharma, A.K., Kumar, S., Ray, D.D., Rawat, A.K.S.: Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 192, 259–267 (2013). https://doi.org/10.1016/j.vetpar.2012.09.031

    Article  Google Scholar 

  47. Cuellar-Nuñez, M.L., Luzardo-Ocampo, I., Campos-Vega, R., Gallegos-Corona, M.A., González de Mejía, E., Loarca-Piña, G.: Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res. Int. 105, 159–168 (2018). https://doi.org/10.1016/j.foodres.2017.11.004

    Article  Google Scholar 

  48. Upasani, S.M., Kotkar, H.M., Mendki, P.S., Maheshwari, V.L.: Partial characterization and insecticidal properties of Ricinus communis L. foliage flavonoids. Pest Manag. Sci. 59, 1349–1354 (2003). https://doi.org/10.1002/ps.767

    Article  Google Scholar 

  49. Mussatto, S.I., Mancilha, I.M.: Non-digestible oligosaccharides: a review. Carbohydr. Polym. 68, 587–597 (2007). https://doi.org/10.1016/j.carbpol.2006.12.011

    Article  Google Scholar 

  50. Lopes, S.M.S., Krausová, G., Carneiro, J.W.P., Gonçalves, J.E., Gonçalves, R.A.C., de Oliveira, A.J.B.: A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chem. 225, 154–161 (2017). https://doi.org/10.1016/j.foodchem.2016.12.100

    Article  Google Scholar 

  51. Ghramh, H.A., Khan, K.A., Ibrahim, E.H., Setzer, W.N.: Synthesis of gold nanoparticles (AuNPs) Using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials. 9, 765 (2019). https://doi.org/10.3390/nano9050765

    Article  Google Scholar 

  52. Ovenden, S.P.B., Gordon, B.R., Bagas, C.K., Muir, B., Rochfort, S., Bourne, D.J.: A study of the metabolome of Ricinus communis for forensic applications. Aust. J. Chem. 63, 8 (2010). https://doi.org/10.1071/CH09293

    Article  Google Scholar 

  53. Ribeiro, P.R., Fernandez, L.G., de Castro, R.D., Ligterink, W., Hilhorst, H.W.: Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol. 14, 223 (2014). https://doi.org/10.1186/s12870-014-0223-5

    Article  Google Scholar 

  54. Main, P.A., Angley, M.T., O’Doherty, C.E., Thomas, P., Fenech, M.: The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr. Metab. (Lond.) 9, 35 (2012). https://doi.org/10.1186/1743-7075-9-35

    Article  Google Scholar 

  55. Ahmed, F., Ali, R.: Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. Biomed Res. Int. 2013, 367819 (2013). https://doi.org/10.1155/2013/367819

    Article  Google Scholar 

  56. Karaś, M., Jakubczyk, A., Szymanowska, U., Złotek, U., Zielińska, E.: Digestion and bioavailability of bioactive phytochemicals. Int. J. Food Sci. Technol. 52, 291–305 (2016). https://doi.org/10.1111/ijfs.13323

    Article  Google Scholar 

  57. Parsons, B.: Antioxidants in food: the significance of characterisation, identification, chemical and biological assays in determining the role of antioxidants in food. Foods. 6, 68 (2017). https://doi.org/10.3390/foods6080068

    Article  Google Scholar 

  58. Nemudzivhadi, V., Masoko, P., : In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (euphorbiaceae) leaf extracts. Evidence-Based Complement. Altern. Med. 2014, 1–8 (2014). https://doi.org/10.1155/2014/625961

    Article  Google Scholar 

  59. Gal, Y., Mazor, O., Falach, R., Sapoznikov, A., Kronman, C., Sabo, T.: Treatments for pulmonary ricin intoxication: current aspects and future prospects. Toxins (Basel) 9, 311–315 (2017). https://doi.org/10.3390/toxins9100311

    Article  Google Scholar 

  60. Vasco-Leal, J.F., Hernández-Ríos, I., Méndez-Gallegos, S.J., Ventura-Ramos, E.J., Cuellar-Nuñez, M.L., Mosquera-Artamonov, J.D.: Relation between the chemical composition of the seed and oil quality of twelve accessions of Ricinus communis L. Rev. Mex. Ciencias Agrícolas. 8, 1343–1356 (2017)

    Article  Google Scholar 

  61. Vafaie, A., Ebadi, A., Rastgou, B., Moghadam, S.H.: The effects of potassium and magnesium on yield and some physiological trains of safflower (Carthamus tinctorius). Int. J. Agric. Crop Sci. 5, 1895–1900 (2013)

    Google Scholar 

  62. Zhu, Q., Gu, H., Ke, Z.: Congeneration biodiesel, ricinine and nontoxic meal from castor seed. Renew. Energy 120, 51–59 (2018). https://doi.org/10.1016/j.renene.2017.12.075

    Article  Google Scholar 

  63. Rengasamy, M., Anbalagan, K., Kodhaiyolii, S., Pugalenthi, V.: Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil. RSC Adv. 6, 9261–9269 (2016). https://doi.org/10.1039/c5ra15186d

    Article  Google Scholar 

  64. Riaz, S., Farrukh, M.A.: Toxicological analysis of ricin in medicinal castor oil with evaluation of health hazards. Asian J. Chem. 26, 499–503 (2014). https://doi.org/10.14233/ajchem.2014.15596

    Article  Google Scholar 

Download references

Acknowledgements

Authors José F. Vasco-Leal, M. Liceth Cuellar-Nuñez, and Ivan Luzardo-Ocampo were supported by a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico) [Grant Numbers 259801, 278375, and 384201]. The authors would like to thank Colegio de Ingenieros Agrónomos Queretanos (CIAQ) and Facultad de Contaduria y Administracion from Universidad Autonoma de Queretaro (UAQ) for their valuable logistic and technical support.

Funding

The authors would like to thank Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico) for the provided Ph.D. scholarships. The funding received by Fondos de Proyectos Especiales de Rectoria (FOPER) from Universidad Autónoma de Queretaro (UAQ) (2019-00841) is also well appreciated.

Author information

Authors and Affiliations

Authors

Contributions

J. F. V. L., M. L. C. N., and I. L.O. proposed the project; J. F. V. L., M. L. C. N., and I. L.O. designed the experiments; J. F. V. L., M. L. C. N., I. L.O., and M. E. R. G. performed the experiments; J. F. V. L., M. L. C. N., I. L.O., and M. E. R. G. developed and wrote the manuscript; E. J. V. R., G. L. P., and M. E. R. G. provided scientific guidance throughout the research; J. F. V. L., M. E. R. G., G. L. P., and E. J. V. R. provided part of the funding for this project; I. L. O., M. L. C. N., and G. L. P. revised and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ivan Luzardo-Ocampo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasco-Leal, J.F., Cuellar-Nuñez, M.L., Luzardo-Ocampo, I. et al. Valorization of Mexican Ricinus communis L. Leaves as a Source of Minerals and Antioxidant Compounds. Waste Biomass Valor 12, 2071–2088 (2021). https://doi.org/10.1007/s12649-020-01164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01164-5

Keywords

Navigation