Skip to main content

Advertisement

Log in

Ni0.5M0.5Fe2O4 (M = Cu, Zn) Ferrites Hosted in Nanoporous Carbon from Waste Materials as Catalysts for Hydrogen Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work is focused on the preparation of Ni0.5M0.5Fe2O4 mixed ferrites (M = Zn or Cu), supported on nanoporous carbons materials. The carbon supports are obtained from various waste residues, such as peach stones from the canning industry and by-products from the low rank coals pyrolysis. X-ray diffraction (XRD), nitrogen physisorption, high-resolution transmission electron microscopy (HRTEM), Moessbauer spectroscopy and temperature programmed reduction (TPR) analyses as well as mesoporous silica with tridimensional structure type KIT-6 silica based reference samples are used for detail characterization of the obtained materials. It was established that the loaded on the carbon supports phase is a complex mixture of finely dispersed ferrite, substituted magnetite, metal (Cu, Fe, FeNi alloy) and ZnO particles. Their dispersion and composition depend on the texture characteristics of the carbon support, which could be easily controlled by the waste precursor used. The existence of mesoporosity in the carbon host matrix provokes the formation of more finely dispersed and easily reducible spinel particles, which ensures higher initial catalytic activity, but fast deactivation of the catalysts. The formation of activated carbon mesoporosity is facilitated by the presence of cellulose and hemicellulose in the biomass or the addition of furfural to the coal tar pitch precursor. The Ni0.5Zn0.5Fe2O4 modifications demonstrate higher potential as catalysts for hydrogen production via methanol decomposition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. https://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/Chap3.pdf/2012.03.15

  2. Danish, M., Ahmad, T.: A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 87, 1–21 (2018)

    Google Scholar 

  3. González-García, P.: Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 87, 1393–1414 (2018)

    Google Scholar 

  4. Yahya, M., Al-Qodah, Z., Ngah, C.: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. 46, 218–235 (2015)

    Google Scholar 

  5. Nor, N., Chung, L., Teong, L., Mohamed, A.: Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J. Environ. Chem. Eng. 1, 658–666 (2013)

    Google Scholar 

  6. Chow, C.F., Wong, W.L., Chan, C.S., Li, Y., Tang, Q., Gong, C.B.: Breakdown of plastic waste into economically valuable carbon resources: rapid and effective chemical treatment of polyvinylchloride with the Fenton catalyst. Polym. Degrad. Stab. 146, 34–41 (2017)

    Google Scholar 

  7. Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y.: Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem. Eng. Res. Design 129, 271–296 (2018)

    Google Scholar 

  8. Dias, J., Alvim-Ferraz, M., Almeida, M., Rivera-Utrilla, J., Sanchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manage. 85, 833–846 (2007)

    Google Scholar 

  9. Vincenzo, L., Nan, Y., James, W.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733–737 (2001)

    Google Scholar 

  10. Julkapli, N., Bagheri, S.: Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy 40, 948–979 (2015)

    Google Scholar 

  11. Pikna, L., Milkovic, O., Saksl, K., Hezelova, M., Smrcova, M., Pulis, P., Michalik, S., Gamcova, J.: The structure of nano-palladium deposited on carbon-based supports. J. Solid State Chem. 212, 197–204 (2014)

    Google Scholar 

  12. Fu, T., Li, Z.: Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis. Chem. Eng. Sci. 135, 3–20 (2015)

    Google Scholar 

  13. Meryemoglu, B., Irmak, S., Hasanoglu, A., Erbatu, O., Kaya, B.: Influence of particle size of support on reforming activity and selectivity of activated carbon supported platinum catalyst in APR. Fuel 134, 354–357 (2014)

    Google Scholar 

  14. Wang, S., Gao, S., Tang, Y., Wang, L., Jia, D., Liu, L.: Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol. J. Solid State Chem. 260, 117–123 (2018)

    Google Scholar 

  15. Zeng, T., Yu, M., Zhang, H., He, Z., Zhang, X., Chen, J., Song, S.: In situ synthesis of cobalt ferrites-embedded hollow N-doped carbon as an outstanding catalyst for elimination of organic pollutants. Sci. Total Environ. 593–594, 286–296 (2017)

    Google Scholar 

  16. Li, X., Tie, K., Li, Z., Guo, Y., Liu, Z., Liu, X., Liu, X., Feng, H., Zhao, X.S.: Nitrogen-doped hierarchically porous carbon derived from cherry stone as a catalyst support for purification of terephthalic acid. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.03.195

    Article  Google Scholar 

  17. Mahmoudi, M., Dentzer, J., Gadiou, R., Ouederni, A.: Evaluation of activated carbons based on olive stones as catalysts during hydrogen production by thermocatalytic decomposition of methane. Int. J. Hydrogen Energy 42, 8712–8720 (2017)

    Google Scholar 

  18. Yang, Y., Chiang, K., Burke, N.: Porous carbon-supported catalysts for energy and environmental applications: a short review. Catal. Today 178, 197–205 (2011)

    Google Scholar 

  19. Martin-Martinez, M., Barreiro, M., Silva, A., Figueiredo, J., Faria, J., Gomes, H.: Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution. Appl. Catal. B: Environ. 219, 372–378 (2017)

    Google Scholar 

  20. Sudhakar, P., Soni, H.: Catalytic reduction of nitrophenols using silver nanoparticles-supported activated carbon derived from agro-waste. J. Environ. Chem. Eng. 6, 28–36 (2018)

    Google Scholar 

  21. Lazaro, M., Ascaso, S., Perez-Rodriguez, S., Calderon, J., Galvez, M., Nieto, M., Moliner, R., Boyano, A., Sebastian, D., Alegre, C., Calvillo, L., Celorrio, V.: Carbon-based catalysts: synthesis and applications. Comp. Rend. Chim. 18, 1229–1241 (2015)

    Google Scholar 

  22. Albuquerque, A., Tolentino, M., Ardisson, J., Moura, F., Mendonca, R., Macedo, W.: Nanostructured ferrites: structural analysis and catalytic activity. Ceram. Int. 38, 2225–2231 (2012)

    Google Scholar 

  23. Bayrakdar, H., Yalcin, O., Vural, S., Esmer, K.: Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magnet. Magnet. Mater. 343, 86–91 (2013)

    Google Scholar 

  24. Nawaz, M., Almessiere, M.A., Almofty, S.A., Gungunes, C.D., Slimani, Y., Baykal, A.: Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. J. Photochem. Photobiol. B: Biol. 196, 111506 (2019)

    Google Scholar 

  25. Tombuloglu, H., Tombuloglu, G., Slimani, Y., Ercan, I., Sozeri, H., Baykal, A.: Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ. Pollut. 243B, 872–881 (2018)

    Google Scholar 

  26. Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2018)

    Google Scholar 

  27. Tombuloglu, H., Slimani, Y., Güngüneş, H., Tombuloglu, G., Almessiere, M.A., Sozeri, H., Baykal, A., Ercan, I.: Tracking of SPIONs in Barley (Hordeum vulgare L.) plant organs during its growth. J. Superconduct. Novel Magnet. 32, 3285–3294 (2019)

    Google Scholar 

  28. Kannana, Y.B., Saravanan, R., Srinivasan, N., Ismail, I.: Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles. J. Magnet. Magnet. Mater. 423, 217–225 (2017)

    Google Scholar 

  29. Balavijayalakshmi, J., Suriyanarayanan, N., Jayaprakash, R.: Role of copper on structural, magnetic and dielectric properties of nickel ferrite nano particles. J. Magnet. Magnet. Mater 385, 302–307 (2015)

    Google Scholar 

  30. Sharma, A., Siddiqi, Z.-M., Pathania, D.: Adsorption of polyaromatic pollutants from water system using carbon/ZnFe2O4 nanocomposite: equilibrium, kinetic and thermodynamic mechanism. J. Mol. Liquids 240, 361–371 (2017)

    Google Scholar 

  31. Briceño, S., Escamilla, W.B., Silva, P., García, J., Castillo, H.D., Villarroel, M., Rodriguez, J.P., Ramos, M.A., Morales, R., Diaz, Y.: NiFe2O4/activated carbon nanocomposite as magnetic material from petcoke. J. Magn. Magn. Mater. 360, 67–72 (2014)

    Google Scholar 

  32. Tsoncheva, T., Mileva, A., Tsyntsarski, B., Paneva, D., Spassova, I., Kovacheva, D., Velinov, N., Karashanova, D., Georgieva, B., Petrov, N.: Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenergy 109, 135–146 (2018)

    Google Scholar 

  33. Tsoncheva, T., Mileva, A., Paneva, D., Kovacheva, D., Spassova, I., Nihtianova, D., Markov, P., Petrov, N., Mitov, I.: Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. Micropor. Mesopor. Mater. 229, 59–67 (2016)

    Google Scholar 

  34. Tsoncheva, T., Mileva, A., Marinov, S.P., Paneva, D., Velinov, N., Spassova, I., Kosateva, A., Kovacheva, D., Petrov, N.: Activated carbons from used motor oil as catalyst support for sustainable environmental protection. Micropor. Mesopor. Mater. 259, 9–16 (2018)

    Google Scholar 

  35. Yong, S.T., Ooi, C.W., Chai, S.P., Wu, X.S.: Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrogen Energ. 38, 9541–9552 (2013)

    Google Scholar 

  36. Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N.: Influence of the chemical composition of agricultural by-products on their behaviour during thermal treatment. Bulg. Chem. Commun. 38, 289–292 (2006)

    Google Scholar 

  37. Petrova, B., Budinova, T., Petrov, N., Yardim, M.F., Ekinci, E., Razvigorova, M.: Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch. Carbon 43, 261–267 (2005)

    Google Scholar 

  38. Kleitz, F., Choi, S.H., Ryoo, R.: Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136–2137 (2003)

    Google Scholar 

  39. Baek, J., Lee, H.M., Roh, J.S., Lee, H.S., Kang, H.S., Kim, B.J.: Studies on preparation and applications of polymeric precursor-based activated hard carbons. I: Activation mechanism and microstructure analyses. Micropor. Mesopor. Mater. 219, 258–264 (2016)

    Google Scholar 

  40. Shannon, R.: Revised effects of ionic radii and systematic studies of interatomic distances in halides and halkogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Google Scholar 

  41. Silva, G., Almeida, F., Ferreira, A., Ciminelli, V.: Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As(III) from aqueous solutions. Mater. Res. 15, 1–6 (2012)

    Google Scholar 

  42. Thomas, J., Shinde, A., Krishna, P., Kalarikkal, N.: Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J. Alloys Comp. 546, 77–83 (2013)

    Google Scholar 

  43. Ramankutty, C., Sugunan, S.: Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl. Catal. A: Gen. 218, 39–51 (2001)

    Google Scholar 

  44. Mahmoud, M.H., Elshahawy, A.M., Makhlouf, S.A., Hamdeh, H.H.: Moessbauer and magnetization studies of nickel ferrite nanoparticles synthesised by the microwave-combustion mehod. J. Magnet. Magnet. Mater. 343, 21–26 (2013)

    Google Scholar 

  45. Mohan, B., Park, K.: Superparamagnetic copper ferrite nanoparticles catalyzed aerobic, ligand-free, regioselective hydroboration of alkynes: Influence of synergistic effect. Appl. Catal. A: Gen. 519, 78–84 (2016)

    Google Scholar 

  46. Huang, Y.H., Wang, S.F., Tsai, A.P., Kameoka, S.: Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol. Power Sources 281, 138–145 (2015)

    Google Scholar 

  47. Cesar, D.V., Robertson, R.F., Resende, N.S.: Characterization of ZnO and TiO2 catalysts to hydrogen production using thermoprogrammed desorption of methanol. Catal. Today 133–135, 136–141 (2008)

    Google Scholar 

  48. Roy, P.C., Doh, W.H., Jo, S.K., Kim, C.M.: Interaction of methanol and hydrogen on a ZnO (0001) single crystal surface. J. Phys. Chem. C 117, 15116–15121 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Bulgarian National Scientific Fund (Grant Number КП-06-H27/9). Project BG05M2OP001-1.002-0019 “Clean technologies for sustainable environment—water, waste, energy for circular economy” (Clean&Circle), for development of a Centre of Competence is also acknowledged. Research equipment of distributed research infrastructure INFRAMAT (part of Bulgarian National roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science under contract D01-284/17.12.2019 was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Tsoncheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoncheva, T., Spassova, I., Issa, G. et al. Ni0.5M0.5Fe2O4 (M = Cu, Zn) Ferrites Hosted in Nanoporous Carbon from Waste Materials as Catalysts for Hydrogen Production. Waste Biomass Valor 12, 1371–1384 (2021). https://doi.org/10.1007/s12649-020-01094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01094-2

Keywords

Navigation