Skip to main content
Log in

Methods for Determining Lignocellulosic Biochar Wettability

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

It was shown that many various biochar types are hydrophobic in low temperature (< 500 °C), but high temperature biochar (> 500 °C) has a tendency of increasing hydrophilicity. Hydrophobicity of low temperature biochar is the most often referred to the effect of pores clogging with tars, since aliphatic compounds vapour only at high temperatures. This research used various methods for the evaluation of biochar wettability, such as the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) test and optical determination of a contact angle (CA). Selection of the best method is difficult because of the fact that many studies used different methods, they have been compared with each other, they refer to different theoretical assumptions and they differ technically. The aim of this article is to compare the three methods used for the evaluation of biochar wettability. The chosen techniques include WDPT, MED and CA measurement. Two different temperatures (450 °C and 700 °C) and two different holding times (1 h and 2 h) were used for the production of different wettability biochar types from five different lignocellulosic feedstocks (pine bark, birch bark, pine wood, birch wood and hemps). Results of wettability and all used techniques overlapped; and this means that it had the same tendency in characterising biochar wettability. Mechanical and practical arguments have been made for the selection of the most suitable method for determination of biochar wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Werner, S., Katzi, K., Wichern, M., Buekert, A., Steiner, C., Marschner, B.: Agronomic benefits of biochar as a soil amendment after itsuse as waste water filtration medium. Environ. Pollut. 233, 561–568 (2018)

    Article  Google Scholar 

  2. Gwenzi, W., Chaukura, N., Noubactep, C., Mukome, F.N.D.: Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 197, 732–749 (2017)

    Article  Google Scholar 

  3. Duwiejuah, A.B., Cobbina, S.J., Bakobie, N.: Review of eco-friendly biochar used in the removal of trace metals on aqueous phases. Int. J. Environ. Bioremediat. Biodegrad. 5(2), 27–40 (2017)

    Google Scholar 

  4. Rao, M.A., Simeone, G.D.S., Scelza, R., Conte, P.: Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chemosphere 186, 193–201 (2017)

    Article  Google Scholar 

  5. Bubici, S., Korb, J.-P., Kučerik, J., Conte, P.: Evaluation of the surface affinity of water in three biochars using fast field cycling NMR relaxometry. Magn. Reson. Chem. 54, 365–370 (2016)

    Article  Google Scholar 

  6. Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombola, A.G., Ojeda, G., Bachmann, J., Behrendt, F.: Towards biochar and hydrochar engineering—influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies 11(3), 496 (2018)

    Article  Google Scholar 

  7. Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G.: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203, 183–191 (2013)

    Article  Google Scholar 

  8. Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K.: Environmental application of biochar: current status and perspectives. Bioresour. Technol. 246, 110–122 (2017)

    Article  Google Scholar 

  9. Yang, K., Jiang, Y., Yang, J., Lin, D.: Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 C. Environ. Pollut. 233, 64–70 (2018)

    Article  Google Scholar 

  10. Hagemann, N., Joseph, S., Schmidt, H.P., Kammann, C.I., Harter, J., Borch, T., Young, R.B., Varga, K., Taherymoosavi, S., Elliott, K.W.: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 8, 1089 (2017)

    Article  Google Scholar 

  11. Suliman, W., Harsh, J.B., Abu-Lail, N.I., Fortuna, A.-M., Dallmeyer, I., Garcia-Perez, M.: The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 574, 139–147 (2017)

    Article  Google Scholar 

  12. Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Munoz, M.A., Faz, A.: Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144, 122–130 (2016)

    Article  Google Scholar 

  13. Kinney, T.J., Masiello, C.A., Dugan, B., Hockaday, W.C., Dean, M.R., Zygourakis, K., Barnes, R.T.: Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41, 34–43 (2012)

    Article  Google Scholar 

  14. Briggs, C., Breiner, J.M., Graham, R.C.: Physical and chemical properties of Pinus Ponderosa charcoal: implications for soil modification. Soil Sci. 177(4), 263–268 (2012)

    Article  Google Scholar 

  15. Hale, L., Luth, M., Crowley, D.: Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol. Chem. 81, 228–235 (2015)

    Article  Google Scholar 

  16. Amonette, J.E.: Letter Report for Characterization of Biochar. Pacific Northwest National Laboratory, Washington (2013)

    Book  Google Scholar 

  17. Jeffery, S., Meinders, M.B.J., Stoof, C.R., Bezemer, T.M., van de Voorde, T.F.J., Mommer, L., van Groenigen, J.W.: Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 251–252, 47–54 (2015)

    Article  Google Scholar 

  18. Hallet, P. D. (2007): An introduction to soil water repellency, Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals, 6–9 August, Columbus, Ohio, USA

  19. Leelamanie, D.A.L., Karube, J., Yoshida, A.: Characterizing water repellency indices: contact angle and water drop penetration time of hydrophobized sand. Soil Sci. Plant Nutr. 54, 179–187 (2008)

    Article  Google Scholar 

  20. Korenkova, L., Šimkovic, I., Dlapa, P., Jurani, B., Matuš, P.: Identifying the origin of soil water repellency at regional level using multiple soil characteristics: the White Carpathians and Myjavska Pahorkatina Upland case study. Soil Water Resour. 10(2), 78–89 (2015)

    Article  Google Scholar 

  21. Lourenco, S.D.N., Saulick, Y., Zheng, S., Kang, H., Liu, D., Lin, H., Yao, T.: Soil wettability in ground engineering: fundamentals, methods, and applications. Acta peotechnika 13(1), 1–14 (2018)

    Google Scholar 

  22. Olorunfemi, I.E., Ogunrinde, T.A., Fasinmirin, J.T.: Soil hydrophobicity: an overview. J Sci. Res. Rep. 3(8), 1003–1037 (2014)

    Google Scholar 

  23. Baltrėnaitė, E., Baltrėnas, P., Bhatnagar, A., Vilppo, T., Selenius, M., Koistinen, A., Dahl, M., Penttinen, O.-P.: A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. Int. Biodeter. Biodegr. 119, 565–576 (2017)

    Article  Google Scholar 

  24. Stevenson, W.: Evaluating Soaking Times on the Hydrophobicity of Biochar Using the Water Droplet Penetration Time Method. University of Amsterdam, The soil fertility project (2016)

    Google Scholar 

  25. Page-Dumroese, D.S., Robichaud, P.R., Brown, R.E., Tirocke, J.M.: Water repellency of two forest soils after biochar addition. Am. Soc. Agric. Biol. Eng. 58(2), 335–342 (2015)

    Google Scholar 

  26. Biria, D., Maghsoudi, E., Roostaazad, R.: Application of biosurfactants to wettability alteration and IFT reduction in enhanced oil recovery from oil-wet carbonates. Pet. Sci. Technol. 32(12), 1259–1267 (2013)

    Article  Google Scholar 

  27. Shang, J., Flury, M., Harsh, J.B., Zollars, R.L.: Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci. 328(2), 299–307 (2008)

    Article  Google Scholar 

  28. Shariff, A., Aziz, N.S.M., Saleh, N.M., Ruzali, N.S.I.: The effect of feedstock type and slow pyrolysis temperature on biochar yield from coconut wastes. Int. J. Chem. Mol. Eng. 10(12), 1410–1414 (2016)

    Google Scholar 

  29. Tripathi, M., Sahu, J.N., Ganesan, P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481 (2016)

    Article  Google Scholar 

  30. Ojeda, G., Mattana, S., Avila, A., Alcaniz, J.M., Volkmann, M., Bachmann, J.: Are soil-water functions affected by biochar application? Geoderma 49, 1–11 (2015)

    Article  Google Scholar 

  31. Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M.: Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 12(6), e0179079 (2017)

    Article  Google Scholar 

  32. Das, O., Sarmah, A.K.: The love-hate relationship of pyrolysis biochar and water: a perspective. Sci. Total Environ. 512–513, 682–685 (2015)

    Article  Google Scholar 

  33. Aller, D., Rathke, S., Laird, D., Cruse, R., Hatfield, J.: Impacts of fresh and aged biochars on plant available water use efficiency. Geoderma 307, 114–121 (2017)

    Article  Google Scholar 

  34. Raisanen, T., Anthanassiadis, D.: Basic chemical composition of the biomass components of pine, spruce and birch. For. Refin. 31, 4 (2013)

    Google Scholar 

  35. Pettersen, R.C.: The chemical composition of wood. Chem. Solid Wood 207(2), 57–126 (1984)

    Article  Google Scholar 

  36. Moghaddam, M. S.: Wettability of modified wood, doctoral thesis, KTH Royal Institute of Technology, Stockholm (2015)

  37. Bekhta, P., Krystofiak, T.: The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas Cienc Technol. 18(1), 79–90 (2016)

    Google Scholar 

  38. Bryne, L. E.: Aspects on wettability and surface composition of modified wood. Licentiate Thesis, KTH-Stockholm, Sweden (2008)

  39. Laschimke, R.: Investigation of the wetting behaviour of natural lignin—a contribution to the cohesion theory of water transport in plant. Thermochim. Acta 151, 35–56 (1989)

    Article  Google Scholar 

  40. Mantanis, G.I., Young, R.A.: Wetting of wood. Wood Sci. Technol. 31, 339–353 (1997)

    Article  Google Scholar 

  41. Yang, G., Jaakkola, P.: Wood Chemistry and Isolation of Extractives from Wood. Saimaa university of applied sciences, Literature study for BIOTULI project (2011)

    Google Scholar 

  42. Graca, J.: Suberin: the biopolyester at the frontier of plants. Front. Chem. 3, 62 (2015)

    Article  Google Scholar 

  43. Thomsen, A.B., Rasmussen, S., Bohn, V., Nielsen, K.V., Thygesen, A.: Hemp Raw Materials: The Effect of Cultivar, Growth Conditions and Pretreatment on the Chemical Composition of the Fibres. Risø National Laboratory, Roskilde (2005)

    Google Scholar 

  44. Bontchev, R.; Kim, H. S.; Wilson, R. W.; Belcher, R. W.; Cheyne, C.; Manzer, L. E.; Jarand, M. L.; Wan. H.; Malyala, R.: 2016 12 22. Enhanced biochar. US patent No. 62/162, 219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Usevičiūtė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usevičiūtė, L., Baltrėnaitė, E. Methods for Determining Lignocellulosic Biochar Wettability. Waste Biomass Valor 11, 4457–4468 (2020). https://doi.org/10.1007/s12649-019-00713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00713-x

Keywords

Navigation