Skip to main content
Log in

Choline Based Basic Ionic Liquid (BIL)/Acidic DES Mediated Cellulose Rich Fractionation of Agricultural Waste Biomass and Valorization to 5-HMF

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present work demonstrates the efficient alkaline pre-treatment method to obtain a cellulose rich fraction from agricultural waste biomass using low cost and biocompatible aqueous choline hydroxide [Ch]OH, a basic ionic liquid (BIL) and the conversion of isolated cellulose into 5-(hydroxymethyl) furfural, catalyzed by various homogeneous acidic deep eutectic solvents (DES).

Graphical Abstract

(a) Low cost, mild biodegradable choline hydroxide (basic ionic liquid). (b) White cellulose fibers without bleaching process. (c) Recyclable and recoverable catalysts. And (d) High yield and purity of 5-HMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Donate, P.M.: Green synthesis from biomass. Chem. Biol. Technol. Agric. https://doi.org/10.1186/s40538-014-0004-2 (2014)

    Article  Google Scholar 

  2. Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4, 1–19 (2017)

    Article  Google Scholar 

  3. Dutta, S., Bhaumik, A., Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. https://doi.org/10.1039/C4EE01075B (2014)

    Article  Google Scholar 

  4. Dutta, S., Wu, K.C.W.: Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. https://doi.org/10.1039/c4gc01405g (2014)

    Article  Google Scholar 

  5. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pre-treatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2015.08.085 (2015)

    Article  Google Scholar 

  6. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 1–17. https://doi.org/10.4061/2011/787532 (2011)

  7. Guimond, R., Chabot, B., Law, K.N., Daneauld, C.: The use of cellulose nanofibres in paper making. J. Pulp Paper Sci. 36, 55–61 (2010)

    Google Scholar 

  8. Dutta, S., Wu, K.C.W., Saha, B.: Emerging strategies of breaking 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)

    Article  Google Scholar 

  9. Tianjiao, Q.T., Zhang, X., Gu, X., Han, H., Ji, G., Chen, X., Xiao, W.: Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain. Chem. Eng. 5, 7733–7742 (2017)

    Article  Google Scholar 

  10. Karp, E.M., Resch, M.G., Donohoe, B.S., Ciesielski, P.N., O’Brien, M.H., Nill, J.E., Mittal, A., Biddy, M.J., Beckham, G.T.: Alkaline pretreatment of switch grass. ACS Sustain. Chem. Eng. 3, 1479–1491 (2015)

    Article  Google Scholar 

  11. Costa Lopes, A.M., Joao, K.G., Morais, A.R.C., Lukasik, E.B., Lukasik, R.B.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process. 1, 1–31 (2013)

    Article  Google Scholar 

  12. Hou, Q., Ju, M., Li, W., Liu, L., Chen, Y., Yang, Q.: Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules. 22, 490 (2017)

    Article  Google Scholar 

  13. Peleteiro, S., Rivas, S., Alonso, J.L., Santos, V., Parajo, J.C.: Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation or pretreatment. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.5b03461 (2015)

    Article  Google Scholar 

  14. Costa Lopes, A.M., Lukasik, R.B.: Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem. https://doi.org/10.1002/cssc.201402950 (2015)

    Article  Google Scholar 

  15. Rashida, T., Kait, C.F., Regupathi, I., Murugesan, T.: Dissolution of kraft lignin using protic ionic liquids and characterization. Ind. Crops Prod. 84, 284–293 (2016)

    Article  Google Scholar 

  16. Sochaa, A.M., Parthasarathia, R., Jian, S., Pattathile, S.K., Whytea, D., Bergerona, M., Georgea, A., Trana, K., Stavilad, V., Venkatachalame, S., Hahne, M.G., Simmonsa, B.A., Singh, S.: Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. PNAS. 3587–3595. https://doi.org/10.1073/pnas.1405685111 (2014)

  17. Matsagar, B.M., Hossain, S.A., Islam, T., Alamri, H.R., Alothman, Z.A., Yamauchi, Y., Dhepe, P.L., Wu, K.C.W.: Direct production of furfural in one-pot fashion from raw biomass using Brønsted acidic ionic liquids. Sci. Rep. https://doi.org/10.1038/s41598-017-13946-4 (2017)

    Article  Google Scholar 

  18. Ninomiya, K., Inoue, K., Aomori, Y., Ohnishi, A., Ogino, C., Shimizu, N., Takahashi, K.: Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem. Eng. J. 259, 323–329 (2015)

    Article  Google Scholar 

  19. Ren, H., Zong, M.H., Wu, H., Li, N.: Efficient pretreatment of wheat straw using novel renewable cholinium ionic liquids to improve enzymatic saccharification. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.5b03729 (2016)

    Article  Google Scholar 

  20. Ninomiya, K., Yamauchi, T., Kobayashi, M., Ogino, C., Shimizua, N., Takahashi, K.: Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem. Eng. J. 71, 25–29 (2013)

    Article  Google Scholar 

  21. Hou, X.D., Smith, T.J., Li, N., Zong, M.H.: Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol. Bioeng. https://doi.org/10.1002/bit.24522 (2012)

    Article  Google Scholar 

  22. Liu, Z., Li, L., Liu, C., Xu, A.: Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2018.03.117 (2018)

    Article  Google Scholar 

  23. Silva, S.P.M., Costa Lopes, A.M., Roseiroa, L.B., Lukasik, R.B.: Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv. 3, 16040–16050 (2013)

    Article  Google Scholar 

  24. Lau, B.B.Y., Yeung, T., Patterson, R.J., Aldous, L.: A cation study on rice husk biomass pretreatment with aqueous hydroxides: cellulose solubility does not correlate with improved enzymatic hydrolysis. ACS Sustain. Chem. Eng. 5, 5320–5329 (2017)

    Article  Google Scholar 

  25. Yang, C.Y., Fang, T.J.: Kinetics of enzymatic hydrolysis of rice straw by the pretreatment with a bio-based basic ionic liquid under ultrasound. Process Biochem. https://doi.org/10.1016/j.procbio.2015.01.013 (2015)

    Article  Google Scholar 

  26. Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., Park, D.H.: Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess. Biosyst. Eng. 38, 207–217 (2015)

    Article  Google Scholar 

  27. Fukuoka, A., Dhepe, P.L.: Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed. 45, 5161 – 5163 (2006)

    Article  Google Scholar 

  28. Santos, D., Silva, U.F., Duarte, F.A., Bizzi, C.A., Flores, E.M.M., Mello, P.A.: Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: application to furfural synthesis. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2017.04.034 (2017)

    Article  Google Scholar 

  29. Nandiwale, K.Y., Galande, N.D., Thakur, P., Sawant, S.D., Zambre, V.P., Bokade, V.V.: One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustain. Chem. Eng. 2, 1928–1932 (2014)

    Article  Google Scholar 

  30. Zhou, L., Liang, R., Ma, Z., Wu, T., Wu, Y.: Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol. 129, 450–455 (2013)

    Article  Google Scholar 

  31. Kim, B., Jeong, J., Lee, D., Kim, S., Yoon, H.J., Lee, Y.S., Cho, J.K.: Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem. 13, 1503 (2011)

    Article  Google Scholar 

  32. Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X., Sun, Y., Hu, L., Liu, S., Lei, T., Lin, L.: Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem. 10, 2696–2706 (2017)

    Article  Google Scholar 

  33. Lee, Y.C., Dutta, S., Wu, K.C.W.: Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem. 7, 3241–3246 (2014)

    Article  Google Scholar 

  34. Lee, Y.C., Chen, T.C., Chiu, Y.T., Wu, K.C.W.: An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem. 5, 2153–2157 (2013)

    Article  Google Scholar 

  35. Alama, M.I., Dea, S., Singh, B., Saha, B., Abu-Omarb, M.M.: Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl. Catal. A 486, 42–48 (2014)

    Article  Google Scholar 

  36. Kuo, I.J., Suzuki, N., Yamauchi, Y., Wu, K.C.W.: Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Adv. 3, 2028–2034 (2013)

    Article  Google Scholar 

  37. Hsu, W.H., Lee, Y.Y., Peng, W.H., Wu, K.C.W.: Cellulosic conversion in ionic liquids (ILs): effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal. Today 174, 65–69 (2011)

    Article  Google Scholar 

  38. Sert, M., Aslanoglu, A., Ballice, L.: Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents. Renew. Energy. https://doi.org/10.1016/j.renene.2017.10.083 (2017)

    Article  Google Scholar 

  39. Li, X.C., Peng, K., Xia, Q., Liu, X., Wang, Y.: Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chem. Eng. J. https://doi.org/10.1016/j.cej.2017.06.105 (2017)

    Article  Google Scholar 

  40. Yan, L., Zhao, Y., Gu, Q., Li, W.: Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. Front. Chem. Sci. Eng. 6, 282–291 (2012)

    Article  Google Scholar 

  41. Assanosi, A.A., Farah, M.M., Wood, J., Duri, B.A.: A facile acidic choline chloride–p-TSA DES-catalyzed dehydration of fructose to 5-hydroxymethlfurfural. RSC Adv. 4, 39359–39364 (2014)

    Article  Google Scholar 

  42. Workman, J., Weyer, L.: Practical guide to interpretive near infrared spectroscopy, CRC Press, Boca Raton. (2008)

    Google Scholar 

  43. Osborne, B.G.: Near infrared spectroscopy in food analysis, encyclopedia of analytical chemistry. Willey, New York (2006)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful Punjab engineering college (Deemed to be University), Chandigarh for necessary facility and SAIF-CIL Punjab University, Chandigarh for spectroscopic analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neeraj Gupta or Vasundhara Singh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12649_2019_603_MOESM1_ESM.docx

Supplementary material 1 Experimental procedures for extraction of cellulose, hemi-cellulose, lignin, synthesis of HMF from cellulose, comparison table for 5-HMF.Characterization details of all isolated lignocellulosic components and 5-HMF, etc. (DOCX 135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Gupta, N. & Singh, V. Choline Based Basic Ionic Liquid (BIL)/Acidic DES Mediated Cellulose Rich Fractionation of Agricultural Waste Biomass and Valorization to 5-HMF. Waste Biomass Valor 11, 3345–3354 (2020). https://doi.org/10.1007/s12649-019-00603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00603-2

Keywords

Navigation