Skip to main content
Log in

Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Cellulose samples with molecular weights ranging from 8.39 × 104 to 11.00 × 104 g/mol were obtained from wheat straw. The dewaxed wheat straw was pretreated with aqueous hydrochloric acid followed by delignification using an environmentally benign poly (ethyleneglycol)/salt aqueous biphasic system. The yield of cellulose was in the range of 48.9%–55.5% and the cellulose contained 1.2%–3.2% hemicelluloses, and 0.97%–3.47% lignin. All the isolated cellulose samples could be directly dissolved in a 6 wt-% NaOH/4 wt-% urea aqueous solution through a precooling-thawing process to form a homogenous solution. The separation process was investigated and the obtained cellulose and its solution were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray apparatus, and X-ray diffraction. The results revealed that aqueous soluble cellulose can be directly prepared from wheat straw by this method and this study opens a novel pathway to prepare cellulosic materials from agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber G W, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition, 2007, 46(38): 7184–7201

    Article  CAS  Google Scholar 

  2. Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 2007, 46(38): 7164–7183

    Article  CAS  Google Scholar 

  3. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007, 107(6): 2411–2502

    Article  CAS  Google Scholar 

  4. Metzger J O. Production of liquid hydrocarbons from biomass. Angewandte Chemie International Edition, 2006, 45(5): 696–698

    Article  CAS  Google Scholar 

  5. Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science, 2006, 311(5760): 484–489

    Article  CAS  Google Scholar 

  6. Goodger E M. Hydrocarbon fuels: production, properties and performance of liquids and gases. London: Macmillan, 1976, 4–16

    Google Scholar 

  7. Nishio Y. Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Advances in Polymer Science, 2006, 205(9): 97–151

    Article  CAS  Google Scholar 

  8. Heinze T, Liebert T, Heublein B, Hornig S. Functional polymers based on dextran. Advances in Polymer Science, 2006, 205(9): 199–291

    Article  CAS  Google Scholar 

  9. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H P, Marsch S. Nanocelluloses as innovative polymers in research and application. Advances in Polymer Science, 2006, 205(9): 49–96

    Article  CAS  Google Scholar 

  10. Schaible D, Sherwood B. Treatment of pulp to produce microcrystalline cellulose. US 20050145351A1, 2005

  11. Zhang Y, Lu X, Pizzi A, Delmotte L. Wheat straw particleboard bonding improvements by enzyme pretreatment. European Journal of Wood and Wood Products, 2003, 61(1): 49–54

    Article  CAS  Google Scholar 

  12. Avella M, Martuscelli E, Pascucci B, Raimo M, Focher B, Marzetti A. A new class of biodegradable materials—poly-3-hydroxybutyrate steam exploded straw fiber composites. 1. Thermal and impact behavior. Journal of Applied Polymer Science, 1993, 49(12): 2091–2103

    Article  CAS  Google Scholar 

  13. Hornsby P R, Hinrichsen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. 1. Fibre characterization. Journal of Materials Science, 1997, 32(2): 443–449

    Article  CAS  Google Scholar 

  14. Chen J, Spear S K, Huddleston J G, Rogers R D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 2005, 7(2): 64–82

    Article  CAS  Google Scholar 

  15. Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 2005, 23(1): 22–27

    Article  CAS  Google Scholar 

  16. Diaz M J, Eugenio M E, Lopez F, Alaejos J. Paper from olive tree residues. Industrial Crops and Products, 2005, 21(2): 211–221

    Article  CAS  Google Scholar 

  17. Yan L F, Li W, Yang J L, Zhu Q S. Direct visualization of straw cell walls by AFM. Macromolecular Bioscience, 2004, 4(2): 112–118

    Article  CAS  Google Scholar 

  18. Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, 20(2): 131–141

    Article  CAS  Google Scholar 

  19. Smook G A. Handbook for Pulp & Paper Technologists. 2nd ed. Vancouver: Angus Wilde Publications, 1992, 22–58

    Google Scholar 

  20. Vincent J F V. From cellulose to cell. Journal of Experimental Biology, 1999, 202(Pt 23): 3263–3268

    CAS  Google Scholar 

  21. Sun R C, Fang J M, Tomkinson J, Geng Z C, Liu J C. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydrate Polymers, 2001, 44(1): 29–39

    Article  CAS  Google Scholar 

  22. Herrera A, Tellez-Luis S J, Gonzalez-Cabriales J J, Ramirez J A, Vazquez M. Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. Journal of Food Engineering, 2004, 63(1): 103–109

    Article  Google Scholar 

  23. Sepulveda-Huerta E, Tellez-Luis S J, Bocanegra-Garcia V, Ramirez J A, Vazquez M. Production of detoxified sorghum straw hydrolysates for fermentative purposes. Journal of the Science of Food and Agriculture, 2006, 86(15): 2579–2586

    Article  CAS  Google Scholar 

  24. Aguilar R, Ramirez J A, Garrote G, Vazquez M. Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering, 2002, 55(4): 309–318

    Article  Google Scholar 

  25. Tellez-Luis S J, Uresti R M, Ramirez J A, Vazquez M. Low-salt restructured fish products using microbial transglutaminase as binding agent. Journal of the Science of Food and Agriculture, 2002, 82(9): 953–959

    Article  CAS  Google Scholar 

  26. Herrera A, Tellez-Luis S J, Ramirez J A, Vazquez M. Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science, 2003, 37(3): 267–274

    Article  CAS  Google Scholar 

  27. Gámez S, Gonzalez-Cabriales J J, Ramirez J A, Garrote G, Vazquez M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 2006, 74(1): 78–88

    Article  Google Scholar 

  28. Ruan D, Zhang L N, Lue A, Zhou J P, Chen H, Chen X M, Chu B, Kondo T. A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromolecular Rapid Communications, 2006, 27(17): 1495–1500

    Article  CAS  Google Scholar 

  29. Pye E K, Lora J H. The alcell process—a proven alternative to Kraft pulping. Tappi Journal, 1991, 74(3): 113–118

    CAS  Google Scholar 

  30. Green R P, Hough G. Chemical Recovery in the Alkaline Pulping Processes Revised Edition. Atlanta: Tappi Press, 1992, 1–35

    Google Scholar 

  31. Paszner L, Cho H J. Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi Journal, 1989, 72(2): 135–142

    CAS  Google Scholar 

  32. Mcdonough T J. The chemistry of organosolv delignification. Tappi Journal, 1993, 76(8): 186–193

    CAS  Google Scholar 

  33. Guo Z, Li M, Willauer H D, Huddleston J G, April G C, Rogers R D. Evaluation of polymer-based aqueous biphasic systems as improvement for the hardwood alkaline pulping process. Industrial & Engineering Chemistry Research, 2002, 41(10): 2535–2542

    Article  CAS  Google Scholar 

  34. Zhang L N, Ruan D, Gao S J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(14): 1521–1529

    Article  CAS  Google Scholar 

  35. Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular Bioscience, 2005, 5(6): 539–548

    Article  CAS  Google Scholar 

  36. Chai X S, Zhu J Y. Method for rapidly determining a pulp kappa number using spectrophotometry. US 6475339B1, 2002

  37. Togrul H, Arslan N. Flow properties of sugar beet pulp cellulose and intrinsic viscosity-molecular weight relationship. Carbohydrate Polymers, 2003, 54(1): 63–71

    Article  CAS  Google Scholar 

  38. Johnston H K, Sourirajan S. Viscosity-temperature relationships for cellulose acetate-acetone solutions. Journal of Applied Polymer Science, 1973, 17(12): 3717–3726

    Article  Google Scholar 

  39. Zhou J P, Zhang L, Deng Q H, Wu X J. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(23): 5911–5920

    Article  CAS  Google Scholar 

  40. Roberts K. Structures at the plant cell surface. Current Opinion in Cell Biology, 1990, 2(5): 920–928

    Article  CAS  Google Scholar 

  41. Ristolainen M, Alen R, Malkavaara P, Pere J. Reflectance FTIR microspectroscopy for studying effect of xylan removal on unbleached and bleached birch Kraft pulps. Holzforschung, 2002, 56(5): 513–521

    Article  CAS  Google Scholar 

  42. Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation & Stability, 2001, 74(2): 307–319

    Article  CAS  Google Scholar 

  43. Sun R, Sun X F, Liu G Q, Fowler P, Tomkinson J. Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polymer International, 2002, 51(2): 117–124

    Article  CAS  Google Scholar 

  44. Sun X F, Sun R C, Su Y Q, Sun J X. Comparative study of crude and purified cellulose from wheat straw. Journal of Agricultural and Food Chemistry, 2004, 52(4): 839–847

    Article  CAS  Google Scholar 

  45. Kaplan D L, ed. Biopolymers from Renewable Resources. 1st ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 1998, 3–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Zhao, Y., Gu, Q. et al. Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. Front. Chem. Sci. Eng. 6, 282–291 (2012). https://doi.org/10.1007/s11705-012-0901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-0901-5

Keywords

Navigation