Skip to main content
Log in

Preparation of Square-Shaped Starch Nanocrystals/Polylactic Acid Based Bio-nanocomposites: Morphological, Structural, Thermal and Rheological Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The development of low-cost bio-nanocomposites based on square-shaped starch nanocrystals (SNCs) is a promising approach for maintaining environmental sustainability. This study reports on a method for the preparation of bio-nanocomposites from polylactic acid (PLA) and SNC derived from acid hydrolysis of waxy maize starch. PLA–SNC bio-nanocomposites were prepared by incorporating SNC at 1, 3 and 5 wt% by dispersing them in PLA matrix using dichloromethane as a solvent. Morphological, thermal, crystalline and rheological properties of neat PLA, neat SNC and PLA–SNC bio-nanocomposites have been investigated to observe the effect of SNC loading. SNC loading at 3 wt% was found to be the optimum loading to improve the storage modulus, complex dynamic viscosity, and crystallinity, while 5 wt% loading caused agglomerations which led to a decrease in the above properties. Thermogravimetric analysis result suggested that both the SNC and PLA–SNC bio-nanocomposites were thermally stable from 25 to 240 °C. Electron microscopy study showed the effective dispersion of SNC in PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bajwa, D.S., Bajwa, S.G., Holt, G., Srinivasan, R., Coffelt, T., Nakayama, F., Gesch, R.: Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites. Waste Biomass Valoriz. 5(4), 709–714 (2014). https://doi.org/10.1007/s12649-013-9263-6

    Article  Google Scholar 

  2. Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., Kenny, J.M.: Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr. Polym. 90(2), 948–956 (2012). https://doi.org/10.1016/j.carbpol.2012.06.025

    Article  Google Scholar 

  3. Raquez, J.-M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38(10–11), 1504–1542 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  Google Scholar 

  4. Bouthegourd, E., Rajisha, K., Kalarical, N., Saiter, J.M., Thomas, S.: Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater. Lett. 65(23–24), 3615–3617 (2011)

    Article  Google Scholar 

  5. Condes, M.C., Anon, M.C., Mauri, A.N., Dufresne, A.: Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocoll. 47, 146–157 (2015). https://doi.org/10.1016/j.foodhyd.2015.01.026

    Article  Google Scholar 

  6. Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q.: Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym. 121, 155–162 (2015). https://doi.org/10.1016/j.carbpol.2014.12.040

    Article  Google Scholar 

  7. Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I., Goyanes, S.: Physico-mechanical properties of biodegradable starch nanocomposites. Macromol. Mater. Eng. 294(3), 169–177 (2009). https://doi.org/10.1002/mame.200800271

    Article  Google Scholar 

  8. Yu, J., Ai, F., Dufresne, A., Gao, S., Huang, J., Chang, P.R.: Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε -caprolactone). Macromol. Mater. Eng. 293(9), 763–770 (2008). https://doi.org/10.1002/mame.200800134

    Article  Google Scholar 

  9. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M.: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 87(2), 1596–1605 (2012). https://doi.org/10.1016/j.carbpol.2011.09.066

    Article  Google Scholar 

  10. Madhavan Nampoothiri, K., Nair, N.R., John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101(22), 8493–8501 (2010). https://doi.org/10.1016/j.biortech.2010.05.092

    Article  Google Scholar 

  11. Le Corre, D., Bras, J., Dufresne, A.: Starch nanoparticles: a review. Biomacromolecules 11(5), 1139–1153 (2010). https://doi.org/10.1021/bm901428y

    Article  Google Scholar 

  12. Yin, Z., Zeng, J., Wang, C., Pan, Z.: Preparation and properties of cross-linked starch nanocrystals/polylactic acid nanocomposites. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/454708

    Article  Google Scholar 

  13. Luzi, F., Fortunati, E., Di Michele, A., Pannucci, E., Botticella, E., Santi, L., Kenny, J.M., Torre, L., Bernini, R.: Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydr. Polym. 193, 239–248 (2018). https://doi.org/10.1016/j.carbpol.2018.03.079

    Article  Google Scholar 

  14. Espino-Pérez, E., Gilbert, R.G., Domenek, S., Brochier-Salon, M.C., Belgacem, M.N., Bras, J.: Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr. Polym. 135, 256–266 (2016). https://doi.org/10.1016/j.carbpol.2015.09.005

    Article  Google Scholar 

  15. Garcia, N.L., Lamanna, M., D’Accorso, N., Dufresne, A., Aranguren, M., Goyanes, S.: Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym. Degrad. Stab. 97(10), 2021–2026 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.03.032

    Article  Google Scholar 

  16. Gao, H., Hu, S., Su, F., Zhang, J., Tang, G.: Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polym. Compos. 32(12), 2093–2100 (2011). https://doi.org/10.1002/pc.21241

    Article  Google Scholar 

  17. Garcia, N.L., Fama, L., D’Accorso, N.B., Goyanes, S.: Biodegradable starch nanocomposites. In: Thakur, K.V., Thakur, K.M. (eds.) Eco-friendly Polymer Nanocomposites: Processing and Properties, vol. 75, pp. 17–77. Springer, New Delhi (2015)

    Chapter  Google Scholar 

  18. Rajisha, K., Maria, H., Pothan, L., Ahmad, Z., Thomas, S.: Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 67, 147–153 (2014)

    Article  Google Scholar 

  19. Visakh, P.M., Thomas, S.: Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valoriz. 1(1), 121–134 (2010). https://doi.org/10.1007/s12649-010-9009-7

    Article  Google Scholar 

  20. Tikapunya, T., Zou, W., Yu, W., Powell, P.O., Fox, G.P., Furtado, A., Henry, R.J., Gilbert, R.G.: Molecular structures and properties of starches of Australian wild rice. Carbohydr. Polym. 172, 213–222 (2017). https://doi.org/10.1016/j.carbpol.2017.05.046

    Article  Google Scholar 

  21. LeCorre, D., Bras, J., Dufresne, A.: Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanopart. Res. 13(12), 7193–7208 (2011). https://doi.org/10.1007/s11051-011-0634-2

    Article  Google Scholar 

  22. Liu, D., Wu, Q., Chen, H., Chang, P.R.: Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339(1), 117–124 (2009). https://doi.org/10.1016/j.jcis.2009.07.035

    Article  Google Scholar 

  23. Shi, A., Li, D., Wang, L., Li, B., Adhikari, B.: Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr. Polym. 83(4), 1604–1610 (2011). https://doi.org/10.1016/j.carbpol.2010.10.011

    Article  Google Scholar 

  24. Le Corre, D., Vahanian, E., Dufresne, A., Bras, J.: Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules. 13(1), 132 (2011). https://doi.org/10.1021/bm201333k

    Article  Google Scholar 

  25. Sun, Q., Gong, M., Li, Y., Xiong, L.: Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohydr. Polym. 111, 133–138 (2014). https://doi.org/10.1016/j.carbpol.2014.03.094

    Article  Google Scholar 

  26. Singh, V., Ali, S.Z.: Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym. 41(2), 191–195 (2000). https://doi.org/10.1016/S0144-8617(99)00086-7

    Article  Google Scholar 

  27. Jayakody, J.A.L.P.: The effect of acid hydrolysis on granular morphology and physicochemical properties of native cereal starch granules. Memorial University of Newfoundland (2001)

  28. Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., Dufresne, A.: Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5(4), 1545–1551 (2004). https://doi.org/10.1021/bm049914u

    Article  Google Scholar 

  29. Le Corre, D., Bras, J., Choisnard, L., Dufresne, A.: Optimization of the batch preparation of starch nanocrystals to reach daily time-scale. Starch - Stärke 64(6), 489–496 (2012). https://doi.org/10.1002/star.201100145

    Article  Google Scholar 

  30. Mohammad Amini, A., Razavi, S.M.A.: A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocoll. 57, 132–138 (2016). https://doi.org/10.1016/j.foodhyd.2016.01.022

    Article  Google Scholar 

  31. Sungsanit, K., Kao, N., Bhattacharya, S., Pivsaart, S.: Physical and rheological properties of plasticized linear and branched PLA. Korea–Aust. Rheol. J. 22(3), 187–195 (2010)

    Google Scholar 

  32. Murariu, M., Dechief, A.-L., Ramy-Ratiarison, R., Paint, Y., Raquez, J.-M., Dubois, P.: Recent advances in production of poly(lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites 1(2), 71–82 (2015)

    Article  Google Scholar 

  33. Turner, J., Riga, A., O’Connor, A., Zhang, J., Collis, J.: Characterization of drawn and undrawn poly-l-lactide films by differential scanning calorimetry. J. Therm. Anal. Calorim. 75(1), 257–268 (2004)

    Article  Google Scholar 

  34. Mathew, A.P., Oksman, K., Sain, M.: The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci. 101(1), 300–310 (2006). https://doi.org/10.1002/app.23346

    Article  Google Scholar 

  35. Bel Haaj, S., Thielemans, W., Magnin, A., Boufi, S.: Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr. Polym. 143, 310 (2016). https://doi.org/10.1016/j.carbpol.2016.01.061

    Article  Google Scholar 

  36. Li, W., Corke, H., Beta, T.: Kinetics of hydrolysis and changes in amylose content during preparation of microcrystalline starch from high-amylose maize starches. Carbohydr. Polym. 69(2), 398–405 (2007)

    Article  Google Scholar 

  37. Jayakody, L., Hoover, R.: The effect of lintnerization on cereal starch granules. Food Res. Int. 35(7), 665–680 (2002)

    Article  Google Scholar 

  38. LeCorre, D., Bras, J., Dufresne, A.: Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr. Polym. 87(1), 658–666 (2012). https://doi.org/10.1016/j.carbpol.2011.08.042

    Article  Google Scholar 

  39. Zhang, Z., Zhao, S., Xiong, S.: Physicochemical properties of Indica rice starch modified by mechanical activation and octenyl succinic anhydride. Starch - Stärke (2017). https://doi.org/10.1002/star.201600008

    Article  Google Scholar 

  40. Putaux, J.-L., Molina-Boisseau, S., Momaur, T., Dufresne, A.: Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5), 1198 (2003)

    Article  Google Scholar 

  41. Condés, M.C., Añón, M.C., Dufresne, A., Mauri, A.N.: Composite and nanocomposite films based on Amaranth biopolymers. Food Hydrocoll. 74(Supplement C), 159–167 (2018). https://doi.org/10.1016/j.foodhyd.2017.07.013

    Article  Google Scholar 

  42. Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., Li, X.: In: Tester, R.F. (ed.), Thermal Degradation and Stability of Starch Under Different Processing Conditions, vol. 65. pp. 48–60. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2013)

  43. Jiang, D.D., Yao, Q., McKinney, M.A., Wilkie, C.A.: TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stab. 63(3), 423–434 (1999)

    Article  Google Scholar 

  44. Lin, N., Yu, J., Chang, P., Li, J., Huang, J.: Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym. Compos. 32(3), 472–482 (2011)

    Article  Google Scholar 

  45. Mukherjee, T., Kao, N., Gupta, R., Quazi, N., Bhattacharya, S.: Evaluating the state of dispersion on cellulosic biopolymer by rheology. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43200

    Google Scholar 

  46. Nasseri, R., Mohammadi, N.: Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr. Polym. (2014). https://doi.org/10.1016/j.carbpol.2014.01.029

    Article  Google Scholar 

  47. Galkin, O., Vekilov, P.G.: Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J. Mol. Biol. 336(1), 43–59 (2004). https://doi.org/10.1016/j.jmb.2003.12.019

    Article  Google Scholar 

  48. Narimissa, E., Gupta, R.K., Choi, H.J., Kao, N., Jollands, M.: Morphological, mechanical, and thermal characterization of biopolymer composites based on polylactide and nanographite platelets. Polym. Compos. 33(9), 1505–1515 (2012). https://doi.org/10.1002/pc.22280

    Article  Google Scholar 

  49. Lin, N., Huang, J., Chang, P.R., Feng, J., Yu, J.: Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011). https://doi.org/10.1016/j.carbpol.2010.10.047

    Article  Google Scholar 

  50. Mukherjee, T., Czaka, M., Kao, N., Gupta, R.K., Choi, H.J., Bhattacharya, S.: Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. Carbohydr. Polym. 102, 537–542 (2014). https://doi.org/10.1016/j.carbpol.2013.11.047

    Article  Google Scholar 

  51. Mukherjee, T., Sani, M., Kao, N., Gupta, R.K., Quazi, N., Bhattacharya, S.: Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem. Eng. Sci. 101, 655–662 (2013). https://doi.org/10.1016/j.ces.2013.07.032

    Article  Google Scholar 

  52. Lin, N., Chen, G., Huang, J., Dufresne, A., Chang, P.R.: Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J. Appl. Polym. Sci. 113(5), 3417–3425 (2009). https://doi.org/10.1002/app.30308

    Article  Google Scholar 

  53. Chen, X., Kalish, J., Hsu, S.L.: Structure evolution of α′-phase poly(lactic acid). J. Polym. Sci. B 49(20), 1446–1454 (2011). https://doi.org/10.1002/polb.22327

    Article  Google Scholar 

  54. Furuhashi, Y., Yoshie, N.: Stereocomplexation of solvent-cast poly(lactic acid) by addition of non-solvents. Polym. Int. 61(2), 301–306 (2012). https://doi.org/10.1002/pi.3190

    Article  Google Scholar 

  55. Chen, Y., Cao, X., Chang, P.R., Huneault, M.A.: Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym. 73(1), 8–17 (2008). https://doi.org/10.1016/j.carbpol.2007.10.015

    Article  Google Scholar 

  56. Gonzalez, K., Retegi, A., Gonzalez, A., Eceiza, A., Gabilondo, N.: Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr. Polym. 117, 83–90 (2015). https://doi.org/10.1016/j.carbpol.2014.09.055

    Article  Google Scholar 

  57. Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M.: Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr. Polym. 107, 16–24 (2014)

    Article  Google Scholar 

  58. Das, K., Ray, D., Banerjee, I., Bandyopadhyay, N., Sengupta, S., Mohanty, A.K., Misra, M.: Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. J. Appl. Polym. Sci. 118(1), 143–151 (2010)

    Article  Google Scholar 

  59. Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., Patriana, F.M.: Bioplastic based on starch and cellulose nanocrystals from rice straw. J. Reinf. Plast. Compos. 33(24), 2205–2213 (2014). https://doi.org/10.1177/0731684414558325

    Article  Google Scholar 

  60. Fortunati, E., Luzi, F., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L.: Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind. Crops Prod. 67, 439–447 (2015). https://doi.org/10.1016/j.indcrop.2015.01.075

    Article  Google Scholar 

  61. Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D.M.: Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 91(1), 377–384 (2013). https://doi.org/10.1016/j.carbpol.2012.08.054

    Article  Google Scholar 

  62. Krishnamachari, P., Zhang, J., Lou, J., Yan, J., Uitenham, L.: Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int. J. Polym. Anal. Charact. 14(4), 336–350 (2009)

    Article  Google Scholar 

  63. Arias, A., Heuzey, M.-C., Huneault, M.A., Ausias, G., Bendahou, A.: Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22(1), 483–498 (2015)

    Article  Google Scholar 

  64. Sungsanit, K., Kao, N., Bhattacharya, S.: Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52(1), 108–116 (2012)

    Article  Google Scholar 

  65. Sullivan, E., Moon, R., Kalaitzidou, K.: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8(12), 8106–8116 (2015). https://doi.org/10.3390/ma8125447

    Article  Google Scholar 

  66. Hu, F., Lin, N., Chang, P.R., Huang, J.: Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr. Polym. 129, 208–215 (2015)

    Article  Google Scholar 

  67. Reinsch, V.E., Kelley, S.S.: Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J. Appl. Polym. Sci. 64(9), 1785–1796 (1997). 10.1002/(SICI)1097-4628(19970531)64:9<1785::AID-APP15>3.0.CO;2-X

    Article  Google Scholar 

  68. Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J.M.: Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym. Degrad. Stab. 97(10), 2027–2036 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.03.027

    Article  Google Scholar 

  69. Pei, A., Zhou, Q., Berglund, L.A.: Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos. Sci. Technol. 70(5), 815–821 (2010). https://doi.org/10.1016/j.compscitech.2010.01.018

    Article  Google Scholar 

  70. Li, H., Cao, Z., Wu, D., Tao, G., Zhong, W., Zhu, H., Qiu, P., Liu, C.: Crystallisation, mechanical properties and rheological behaviour of PLA composites reinforced by surface modified microcrystalline cellulose. Plast. Rubber Compos. 45(4), 181–187 (2016). https://doi.org/10.1179/1743289815Y.0000000040

    Article  Google Scholar 

  71. Gupta, A., Simmons, W., Schueneman, G.T., Hylton, D., Mintz, E.A.: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain. Chem. Eng. 5(2), 1711–1720 (2017). https://doi.org/10.1021/acssuschemeng.6b02458

    Article  Google Scholar 

  72. Hatzikiriakos, S.G., Rathod, N., Muliawan, E.B.: The effect of nanoclays on the processibility of polyolefins. Polym. Eng. Sci. 45(8), 1098–1107 (2005). https://doi.org/10.1002/pen.20388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhol Kao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takkalkar, P., Ganapathi, M., Dekiwadia, C. et al. Preparation of Square-Shaped Starch Nanocrystals/Polylactic Acid Based Bio-nanocomposites: Morphological, Structural, Thermal and Rheological Properties. Waste Biomass Valor 10, 3197–3211 (2019). https://doi.org/10.1007/s12649-018-0372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0372-0

Keywords

Navigation