Skip to main content
Log in

Investigation on Saccharification and Bioethanol Production from Pretreated Agro-Residues Using a Mangrove Associated Actinobacterium Streptomyces variabilis (MAB3)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate the saccharification, followed by bioethanol production by an actinobacterium Streptomyces variabilis (MAB3) isolated from the sediment sample of mangrove environment using Modified Yeast extract—Peptone medium substituted with different concentrations of xylanase (50 to 400 IU) pretreated various agro-residues like vegetable, banana, mango, sugarcane bagasse and sugarcane juice through fermentation process. Among the tested residues, sugarcane juice substituted medium pretreated with 200.0 IU concentration of xylanase exhibited maximum level of reducing sugar (50.19 mg/g), degree of saccharification (59.49%) as well as bioethanol (4.69 g/L) production. Further the organism expressed highest saccharification yield and bioethanol production at the optimized cultural conditions of pH 6, temperature 30 °C, inoculum size 2.5% and incubation time 72 h substituted with 2.5% dextrose and 2.0% urea, respectively as carbon and nitrogen sources. The concentration of produced bioethanol (82.26%) from the optimized medium was determined through HPLC analysis. Finally the bioethanol was evaluated through FT-IR and GC-MS analysis. The basic functional ethanol groups (O–H and C–O) from the optimized medium were denoted in both FT-IR and GC-MS analysis at the wavenumber of 3272.22 and 1077.15 cm−1 with the retention time of 2.60 min, respectively. Based on the results, it could be confirmed that the selected isolate is a potent strain and it can able to hydrolyze the pretreated agro-residues and also it can able to convert the pretreated agro residues into economically important byproduct like bioethanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buaban, B., Inoue, H., Yano, S., Tanapongpipat, S., Rengpipat, S., Eurwilaichitr, L.: Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J. Biosci. Bioeng. 110, 18–25 (2010)

    Article  Google Scholar 

  2. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010)

    Article  Google Scholar 

  3. Chandrakant, P., Bisaria, V.S.: Simultaneous bioconversion of cellulose and hemicelluloses to ethanol. Critc. Rev. Biotechnol. 18, 295–331 (1998)

    Article  Google Scholar 

  4. Lee, S.J., Kim, S.B., Kang, S.W., Han, S.O., Park, C., Kim, S.W.: Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes. Bioprocess Biosys. Eng. 35, 85–92 (2010)

    Article  Google Scholar 

  5. Howard, R.L., Abotsi, E., Jansen van Rensburg, E.L., Howard, S.: Cellulase production from fungal isolate Fusarium sp. Afr. J. Biotechnol. 2, 602–619 (2003)

    Article  Google Scholar 

  6. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y.: Coordinated development of leading biomass pretreatment technologies. Biotechnol. Prog. 96, 1959–1966 (2005)

    Google Scholar 

  7. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    Article  Google Scholar 

  8. Chang, V.C., Holzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 5, 37–47 (2000)

    Google Scholar 

  9. Walia, B.S., Tan, L.U., Saddler, J.N.: Purification and characterization of an alkaline xylanase from Streptomyces viridosporus T7A. Microbiol. Rev. 52, 305–317 (2012)

    Google Scholar 

  10. Beg, Q.K., Bhushan, B., Kapoor, M., Moondal, G.S.: Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in bioleaching of eucalyptus kraft pulp. Enzy. Microbial. Technol. 27, 459–466 (2000)

    Article  Google Scholar 

  11. Sriyapai, D.H., Alves, L., Ribeiro, S., Amaral-Collac, O.M.T: Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species. Antonie Van Leeuwenhoek. 102, 719–734 (2011)

    Google Scholar 

  12. Ragauskas, L.R., Gomes, R.C., Manfio, G.P., Alviano, C.S., Linhares, L.F.: Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzy. Microbial Technol. 31, 549–555 (1994)

    Google Scholar 

  13. Zhou, S., Abotsi, E., Ingram, L.O.: Synergistic hydrolysis of carboxymethyl cellulose and acid swollen cellulose by two endoglucanase (Cel Z and Cel Y) from Erwinia chrysantheme. J. Bacteriol. 182, 5676–5682 (2010)

    Article  Google Scholar 

  14. Ninawe, S., Kuhad, R.C.: Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. J. Appl. Microbiol. 99, 1141–1148 (2006)

    Article  Google Scholar 

  15. Bajaj, B.K., Singh, S.M.: Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28. Biotechnology 1, 161–171 (2010)

    Google Scholar 

  16. APHA: Standard Methods for the Examination of Water/Waste Water. APHAAWWA-WPCF, Washington, DC (1995)

  17. ASTM: Annual Book of American Society for Testing and Materials Standard, vol. 1527. ASTM, Philadelphia (1979)

  18. RadhaKrishnan, M., Balaji, S., Balagurunadhan, R.: Thermotolerant actinomycetes from the Himalayan Mountain antagonistic potential characterization and identification of selected strains. Malay. J. Appl. Biol. 36, 59–65 (2007)

    Google Scholar 

  19. Thenmozhi, R., Victoria, J.: Optimization and improvement of ethanol production by the microporation of organic wastes. Pelagia research library. Adv. Appl. Sci. Res. 4, 119–123 (2013)

    Google Scholar 

  20. Shiling, E.B., Gottlieb, D.: Methods for characterization of Streptomyces species. Int. J. Sys. Bacteriol. 16, 312–340 (1966)

    Google Scholar 

  21. Nathan, A., Jessica, M., Bernan, V., Dworkin, M., Sherman, D.H.: Isolation and characterization of novel marine derived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol. 70, 7520–7529 (2004)

    Article  Google Scholar 

  22. Thompson, J.D., Gibson, J.J., Plewniak Jeanmougin, F., Higgins, D.G.: The clustal windows interface: flexible strategies for multiple sequence alignment aided by quality analysis stools. Nucleic Acid Res. 24, 4876–4882 (1997)

    Article  Google Scholar 

  23. Sanjivkumar, M., Silambarasan, T., Palavesam, A., Immanuel, G.: Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr. Purif. 130, 1–12 (2017)

    Article  Google Scholar 

  24. Detroy, R.W., Cunningham, R.L., Bothast, R.J., Bagby, M.O.: Bioconversion of wheat straw cellulose/hemicelluloses to ethanol by Saccharomyces uvarum and Pachysolen tannophilus. Biotechnol. Bioeng. 24, 1105–1113 (1982)

    Article  Google Scholar 

  25. Saritha, M., Arora, A., Singh, S., Nain, L.: Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour. Technol. 135, 12–17 (2013)

    Article  Google Scholar 

  26. Ahmed, F., Rahmam, S.R., Gomes, D.J.: Saccharification of sugarcane bagasse by enzymatic treatment for bioethanol production. Malay. J. Microbiol. 8, 97–103 (2012)

    Google Scholar 

  27. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  28. Rao, R.S., Bhadra, B., Shivaji, S.: Isolation and characterization of ethanol producing yeasts from characterization of ethanol producing yeasts from fruits and tree barks. Lett. Appl. Microbiol. 47, 19–24 (2008)

    Article  Google Scholar 

  29. Caputi, A., Ueda, M., Brown, T.: Spectrophotometric determination of ethanol in wine. Am. J. Environ. Vitic. 19, 160–165 (1968)

    Google Scholar 

  30. Hossain, M., Anantharaman, N., Das, M.: Bioethanol fermentation from untreated and pretreated lignocellulosic wheat straw using fungi Fusarium oxysporum. Ind. J. Chem. Technol. 19, 63–70 (2012)

    Google Scholar 

  31. Elumalai, S., Sakthivel, R.: GC-MS and FT-IR spectroscopic determination of fatty acid methyl ester of 16 fresh water microalgae, isolated from cement industries of TamilNadu, India. J. Algal Biomass Utn. 4, 50–69 (2013)

    Google Scholar 

  32. Dizhbite, T., Telysheva, G., Dobele, G., Arshanitsa, A., Kampars, V.: Py-GC/MS for characterization of non-hydrolyzed residues from bioethanol production from softwood. J. Analy. Appl. Pyrol. 90, 126–132 (2011)

    Article  Google Scholar 

  33. Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Am. Chem. Soc. 57, 685 (1934)

    Google Scholar 

  34. Jensen, P., Dwight, R., Fenical, A.: The distribution of actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol. 57, 1102–1108 (1991)

    Google Scholar 

  35. Williams, P.G.: Planning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol. 27, 45–52 (2009)

    Article  Google Scholar 

  36. Nithya, B., Ponmurugan, P., Fredimoses, M.: 16 S rRNA phylogenetic analysis of actinomycetes isolated from Eastern Ghats and marine mangrove associated with antibacterial and anticancerous activities. Afr. J. Biotechnol. 11, 12379–12388 (2012)

    Google Scholar 

  37. Remya, M., Vijayakumar, R.: Isolation and characterization of marine antagonistic actinomycetes from west coast of india. Medicine Biol. 15, 13–19 (2008)

    Google Scholar 

  38. Latif, F., Rajoka, M.: Production of ethanol and xylitol from corn cobs by yeasts. Bioresour. Technol. 77, 57–63 (2001)

    Article  Google Scholar 

  39. Goodfellow, M., Willam, S.T., Mordarski, M.: Actinomycetes in biotechnology, Academic press, London (1988)

    Google Scholar 

  40. Rifaat, H.M., Awad, A.H., Gebreel, H.M.: Production of xylanase by Streptomyces sp. and their bleaching effect on rice straw pulp. Appl. Ecol. Environ. Res. 2, 45–51 (2004)

    Article  Google Scholar 

  41. Anderson, A.S., Wellington, E.M.H: The taxonomy of Streptomyces and related genera. Int. J. Sys. Evol. Microbiol. 51, 797–814 (2001)

    Article  Google Scholar 

  42. Clarkin, S.D., Clesceri, L.S.: Enzymatic hydrolysis and cellulose based ion-exchange powdered mixed resins. Appl. Microbiol. Biotechnol. 60, 485–488 (2002)

    Article  Google Scholar 

  43. Zhang, X., Xu, C., Wang, H.: Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng. 104, 149–151 (2007)

    Article  Google Scholar 

  44. Bhattacharya, A., Ganguly, A., Subhabrata, D., Chatterjee, P., Apurba, D.: Fungal isolates from local environment: isolation, screening and application for the production of ethanol from water hyacinth. Int. J. Emer. Technol. Adv. Eng. 3, 58–65 (2013)

    Google Scholar 

  45. Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R.: Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100, 2411–2417 (2009)

    Article  Google Scholar 

  46. Kshirsagar, S.D., Saratale, G.D., Saratale, R.G., Oh, M.K.: An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. J. Appl. Miocrobiol. 11, 136–141 (2016)

    Google Scholar 

  47. Ali, U.F., Ibrahim, Z.M., Isaac, G.S.: Ethanol and xylitol production from xylanase broth of Thermomyces lanuginosus grown on some lignocellulosic wastes using Candida tropicalis EMCC2. Life Sci. J. 10, 968–978 (2013)

    Google Scholar 

  48. Wan, C., Li, Y: Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101, 6398–6403 (2010)

    Article  Google Scholar 

  49. Patel, J., Onkarappa, R., Shobha, K.S.J: Comparative study of ethanol production from microbial pretreated agricultural residues. Appl. Sci. Environ. Manag. 11, 137–141 (2007)

    Google Scholar 

  50. Stalin, T., Sathya priya, B., Selvam, K.: Ecofriendly application of cellulase and xylanase producing marine Streptomyces clavuligerus as enhancer in biogas production from waste. Afr. J. Environ. Sci. Technol. 6, 258–262 (2012)

    Article  Google Scholar 

  51. Belkacemi, K., Hamoudi, S.: Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J. Chem. Technol. Biotechnol. 78, 802–808 (2003)

    Article  Google Scholar 

  52. Ray, R.R.: Saccharification of agro-wastes by endo-xylanase from Streptomyces sp OM09. Int. J. Life Sci. Biotechnol. Pharm. Res. 2, 165–170 (2013)

    Google Scholar 

  53. Huang, C., He, J., Li, X., Min, D., Yong, Q.: Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin carbohydrate complexes. Bioresour. Technol. 192, 471–477 (2015)

    Article  Google Scholar 

  54. Christakopoulos, P.F., Koullas, D.P., Kekos, D., Koukios, E.G., Macris, B.J.: Direct ethanol conversion of pretreated straw by Fusarium oxysporum. Bioresour. Technol. 35, 297–300 (1989)

    Article  Google Scholar 

  55. Mariam, I., Manzoor, K., Ali, S., Ikram-UI-Haq H.: Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak. J. Biotechnol. 41, 821–833 (2009)

    Google Scholar 

  56. Sindhu, V., Kanchana, C.N., Vasanthi, N.S., Ravikumar, R.: Design and development of novel bioreactor for the production of ethanol from low cost pretreated rice straw. IOSR J. Eng. 2, 1424–1428 (2012)

    Article  Google Scholar 

  57. Bak, J.S., Ko, J.K., Choi, I.G., Park, Y.C.: Fungal pretreatment of lignocelluloses by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol. Bioeng. 104, 471–482 (2009)

    Article  Google Scholar 

  58. Bhalt, N., Dharmesh, A., Thakor, P.: Production of xylanase by Aspergillus flavus (FPDN1) on pearl millet bran: optimization of culture conditions and application in bioethanol production. Int. J. Res. Chem. Environ. 2, 204–210 (2012)

    Google Scholar 

  59. Du, M., Huang, S., Wang, J.: The volatiles from fermentation product of Tuber formosanum. J. Forest. 4, 426–429 (2014)

    Google Scholar 

  60. Ahmad, F., Jameel, A.T., Kamarudin, M.H., Mel, M.: Study of growth kinetic and modeling of ethanol production by Saccharomyces cerevisiae. Afr. J. Biotechnol. 16, 18842–18846 (2011)

    Google Scholar 

  61. Shafaghat, H., Najafpour, G.D., Rezaei, P.S., Baei, M.S.: Ethanol production with natural carbon sources in batch and continuous fermentation using free and immobilized Saccharomyces cerevisiae. J. Sci. Ind. Res. 70, 162–164 (2011)

    Google Scholar 

  62. Imamoglu, E., Sukan, F.V.: Scale-up and kinetic modeling for bioethanol production. Bioresour. Technol. 144, 311–320 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University Grants Commission (UGC), New Delhi, Govt. of India, for its financial support in the form of Special Assistance Programme (SAP) [UGC No. F.3–24/2012(SAPII) dtd October 2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grasian Immanuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjivkumar, M., Brindhashini, A., Deivakumari, M. et al. Investigation on Saccharification and Bioethanol Production from Pretreated Agro-Residues Using a Mangrove Associated Actinobacterium Streptomyces variabilis (MAB3). Waste Biomass Valor 9, 969–984 (2018). https://doi.org/10.1007/s12649-017-9886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9886-0

Keyword

Navigation