Skip to main content
Log in

Ethanol Production from Acid Pretreated Food Waste Hydrolysate Using Saccharomyces cerevisiae 74D694 and Optimizing the Process Using Response Surface Methodology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Ethanol production from acid pretreated food waste hydrolysate using immobilized Saccharomyces cerevisiae 74D694 was investigated under different conditions in a batch experiment. Ethanol yield was measured at different time intervals (38, 48, 72, 96 and 105 h) using different immobilized bead ratios (25:100, 30:100, 40:100, 50:100 and 54:100, w/v). Food waste was pretreated using dilute sulphuric acid and the hydrolysate was filtered. The dry food waste had an initial reducing sugar content of 46% (w/w). After dilute acid pretreatment, reducing sugar content increased to 62%. The present study utilized liquid hydrolysate for ethanol production. The process was optimized using central composite design (CCD) a statistical tool used for optimization in response surface methodology (RSM). RSM predicted a maximum ethanol yield of 0.044 g/g of soluble solid in liquid hydrolysate at 40 h fermentation time and immobilized bead ratio of 54:100 (w/v). An experiment was run at the optimal condition and an ethanol yield of 0.047 g/g of soluble solid in liquid hydrolysate was obtained. The predicted result was thus experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RSM:

Response surface methodology

CCD:

Central composite design

YPD:

Yeast peptone dextrose

ANOVA:

Analysis of variance

FID:

Flame ionization detector

CV:

Coefficient of variance

References

  1. Tan, K.T., Lee, K.T., Mohamed, A.R.: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy. 36, 3360–3365 (2008)

    Article  Google Scholar 

  2. Prajapati, V., Trivedi, U., Patel, K.C.: Bioethanol production from the raw corn starch and food waste employing simultaneous saccharification and fermentation approach. Waste Biomass Valoriz. 6, 191–200 (2015)

    Article  Google Scholar 

  3. Liu, B.-F., Xie, G.-J., Wang, R.-Q., Xing, D.-F., Ding, J., Zhou, X., Ren, H.-Y., Ma, C., Ren, N.-Q.: Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor. Biotechnol. Biofuels. 8, 8 (2015)

    Article  Google Scholar 

  4. Matsakas, L., Christakopoulos, P.: Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustain. 7, 1446–1458 (2015)

    Article  Google Scholar 

  5. Silva, V.F.N., Arruda, P. V., Felipe, M.G.A., Gonçalves, A.R., Rocha, G.J.M.: Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J. Ind. Microbiol. Biotechnol. 38, 809–817 (2011)

    Article  Google Scholar 

  6. Díaz, M.J., Cara, C., Ruiz, E., Romero, I., Moya, M., Castro, E.: Hydrothermal pre-treatment of rapeseed straw. Bioresour. Technol. 101, 2428–2435 (2010)

    Article  Google Scholar 

  7. Pérez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J., Manzanares, P.: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel. 87, 3640–3647 (2008)

    Article  Google Scholar 

  8. Pandey, B.K., Vyas, S., Pandey, M., Gaur, A.: Characterisation of municipal solid waste generated from Bhopal, India. Curr. Sci. Perspect. 2, 52–56 (2016)

    Google Scholar 

  9. Barik, S., Paul, K.K.: Potential reuse of kitchen food waste. J. Environ. Chem. Eng. 5, 196–204 (2017)

    Article  Google Scholar 

  10. Srivastava, R., Krishna, V., Sonkar, I.: Characterization and management of municipal solid waste: a case study of Varanasi city, India. Int. J. Curr. Res. Acad. Rev. 2, 10–16 (2014)

    Google Scholar 

  11. Moon, H.C., Song, I.S., Kim, J.C., Shirai, Y., Lee, D.H., Kim, J.K., Chung, S.O., Kim, D.H., Oh, K.K., Cho, Y.S.: Enzymatic hydrolysis of food waste and ethanol fermentation. Int. J. Energy Res. 33, 164–172 (2009)

    Article  Google Scholar 

  12. Alamanou, D.G., Malamis, D., Mamma, D., Kekos, D.: Bioethanol from dried household food waste applying non-isothermal simultaneous saccharification and fermentation at high substrate concentration. Waste Biomass Valoriz. 6, 353–361 (2015)

    Article  Google Scholar 

  13. Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., Tang, J.: Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. J. Clean. Prod. 141, 608–611 (2017)

    Article  Google Scholar 

  14. Han, W., Fang, J., Liu, Z., Tang, J.: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour. Technol. 202, 107–112 (2016)

    Article  Google Scholar 

  15. Han, W., Liu, D.N., Shi, Y.W., Tang, J.H., Li, Y.F., Ren, N.Q.: Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresour. Technol. 180, 54–58 (2015)

    Article  Google Scholar 

  16. Yan, S., Li, J., Chen, X., Wu, J., Wang, P., Ye, J., Yao, J.: Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew. Energy. 36, 1259–1265 (2011)

    Article  Google Scholar 

  17. Zhang, X., Bury, S., DiBiasio, D., Miller, J.E.: Effects of immobilization on growth, substrate consumption, $β$-galactosidase induction, and byproduct formation in Escherichia coli. J. Ind. Microbiol. Biotechnol. 4, 239–246 (1989)

    Google Scholar 

  18. Gundupalli, M.P., Bhattacharyya, D.: Recovery of reducing sugar from food waste: optimization of pretreatment parameters using response surface methodology. In: Suresh, S., Kumar, A., Shukla, A., Singh, R., Krishna, C.M. (eds.) Biofuels and Bioenergy (BICE2016): International Conference, Bhopal, India, 23–25 February 2016, pp. 161–172. Springer, Cham (2017)

  19. Ma, K., Ruan, Z., Shui, Z., Wang, Y., Hu, G., He, M.: Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour. Technol. 203, 295–302 (2016)

    Article  Google Scholar 

  20. Nielsen, S.S.: Food Analysis laboratory manual, 2nd edn. Springer, US

  21. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  22. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  23. Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Natl. Renew. Energy Lab. Tech. Rep. 1617, 1–16 (2011)

  24. Duarte, J., Rodrigues, J.A., Moran, P.J., Valenca, G., Nunhez, J.: Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 3, 31 (2013)

    Article  Google Scholar 

  25. Bergman, L.W., Saghbini, M., Hoekstra, D., Gautsch, J.: Growth and maintenance of yeast. Methods Mol. Biol. 177, 9–14 (2001)

    Google Scholar 

  26. Choi, G.W., Um, H.J., Kim, Y., Kang, H.W., Kim, M., Chung, B.W., Kim, Y.H.: Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass Bioenergy. 34, 1223–1231 (2010)

    Article  Google Scholar 

  27. Laopaiboon, L., Thanonkeo, P., Jaisil, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 23, 1497–1501 (2007)

    Article  Google Scholar 

  28. Buzás, Z., Dallmann, K., Szajani, B.: Influenc of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells. Biotechnol. Bioeng. 34, 882–884 (1989)

  29. Dutka, M., Ditaranto, M., Løvås, T.: Application of a central composite design for the study of NOx emission performance of a low NOx. Burner. Energies. 8, 3606–3627 (2015)

    Article  Google Scholar 

  30. Montgomery, D.C.: Design and analysis of experiments. Design. 2, 780 ST-design and analysis of experiments. Adva (2001)

  31. Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., Syed, Q., Shakir, H.A., Qazi, J.I.: Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valoriz. 7, 1389–1396 (2016)

    Article  Google Scholar 

  32. Montgomery, D.C., Myers, R.H.: Design and analysis of experiments. In: Meyers, R.H., Montgomery, D.C. (eds.) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, Hoboken (1995)

    Google Scholar 

  33. Pandiyan, K., Tiwari, R., Singh, S., Nain, P.K.S., Rana, S., Arora, A., Singh, S.B., Nain, L.: Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. Using response surface methodology. Enzyme Res. 2014 (2014)

  34. Onukwuli, D.O., Emembolu, L.N., Ude, C.N., Aliozo, S.O., Menkiti, M.C.: Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Pet. 26, 103–110 (2016)

  35. Selvakumar, S., Manivasagan, R., Chinnappan, K.: Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech. 3, 71–79 (2013)

    Article  Google Scholar 

  36. Walker, K., Vadlani, P., Madl, R., Ugorowski, P., Hohn, K.L.: Ethanol fermentation from food processing waste. Environ. Prog. Sustain. Energy. 32, 1280–1283 (2013)

    Article  Google Scholar 

  37. Kim, J.H., Lee, J.C., Pak, D.: Feasibility of producing ethanol from food waste. Waste Manag. 31, 2121–2125 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Human Resource and Development, Government of India, under FAST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundupalli, M.P., Bhattacharyya, D. Ethanol Production from Acid Pretreated Food Waste Hydrolysate Using Saccharomyces cerevisiae 74D694 and Optimizing the Process Using Response Surface Methodology. Waste Biomass Valor 10, 701–708 (2019). https://doi.org/10.1007/s12649-017-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0077-9

Keywords

Navigation