Skip to main content
Log in

Valorization of Olive Leaves: Spray Drying of Olive Leaf Extract

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Olive leaf extract has so far been used in a number of medicines, cosmetics, pharmaceuticals or even nutraceuticals. However, solid forms of plant extracts are in crescent expansion and represent several advantages over fluid extracts since the stability is improved, transport and storage become easier and higher concentration could be achieved. Thus, the objective of this work is to develop a method for exploitation of olive leaves, which will lead to the recovery of high-added value substances, based on spray drying of olive leaf extract. Olive leaves of two cultivars (Koroneiki and Chalkidiki) were used and the ultrasound method was employed for the extraction process. Concentrated olive leaf extract, with a feed rate and solids concentration of 1.75 g/min and 17% (w/w), respectively, was spray dried under different conditions of drying air temperature and flow rate and atomizing agent flow rate and product recovery data were gathered. In the case of Koroneiki cultivar, maltodextrin was used as drying agent. The resulting powders were evaluated in terms of moisture content, bulk density, hygroscopicity, and total phenolic content. The optimum operating conditions were found to be as follows: 149 and 156 °C for inlet air temperature, 21.35 and 23.10 m3/h for drying air flow rate, and 683 and 638 L/h for atomizing agent flow rate, for Chalkidiki and Koroneiki cultivar, respectively. Under these conditions, the maximum product recovery was about 71 and 73% for Chalkidiki and Koroneiki cultivar, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Talhaoui, N., Taamalli, A., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A., Segura-Carretero, A.: Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence and health benefits. Food Res. Int. 77(2), 92–108 (2015)

    Article  Google Scholar 

  2. Romero-García, J.M., Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M.J.: Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014)

    Article  Google Scholar 

  3. FAOSTAT Database (2015)

  4. Erbay, Z., Icier, F.: Thin layer drying behaviors of olive leaves (Olea europaea L.). J. Food Process Eng. 33, 287–308 (2010)

    Article  Google Scholar 

  5. Luque de Castro, M.D., Japón-Luján, R.: State-of-the-art and trends in the analysis of oleuropein and derivatives, TrAC. Trends Anal. Chem. 25(5), 501–510 (2006)

    Article  Google Scholar 

  6. Ranalli, A., Marchegiani, D., Contento, S., Girardi, F., Nicolosi, M., Brullo, M.: Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. Eur. J. Lipid Sci. Technol. 111, 678–687 (2009)

    Article  Google Scholar 

  7. Rahmanian, N., Jafari, S.M., Wani T.A.: Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves, Trends Food Sci. Technol. 42, 150–172 (2015)

    Article  Google Scholar 

  8. Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., Skaltsounis, A.L.: Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep. Purif. Technol. 122, 323–330 (2014)

    Article  Google Scholar 

  9. Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., Sayadi, S.: Effect of storage on refined and husk olive oils composition: stabilization by addition of natural antioxidants from Chemlali olive leaves. Food. Chem. 108, 253–262 (2008)

    Article  Google Scholar 

  10. Sanchez-Avila, N., Priego-Capote, F., Ruiz-Jimenez, J., de Castro, L.M.D.: Fast and selective determination of triterpenic compounds in olive leaves by liquid chromatographyetandem mass spectrometry with multiple reaction monitoring after microwave-assisted extraction. Talanta 78, 40–48 (2009)

    Article  Google Scholar 

  11. Rafiee, Z., Jafari, S., Alami, M., Khomeiri, M.: Microwave-assisted extraction of phenolic compounds from olive leaves, a comparison with maceration. J. Anim. Plant Sci. 21, 738–745 (2011)

    Google Scholar 

  12. Taamalli, A., Arráez-Román, D., Ibañez, E., Zarrouk, M., Segura-Carretero, A., Fernández-Gutiérrez, A.: Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. J. Agric. Food. Chem. 60, 791–798 (2012)

    Article  Google Scholar 

  13. Chanioti, S., Siamandoura, P., Tzia, C.: Evaluation of extracts prepared from olive oil by-products using microwave-assisted enzymatic extraction: effect of encapsulation on the stability of final products. Waste Biomass Valor. 7, 831–842 (2016)

    Article  Google Scholar 

  14. Herrero, M., Temirzoda, T.N., Segura-Carretero, A., Quirantes, R., Plaza, M., Ibañez, E.: New possibilities for the valorization of olive oil by-products. J. Chromatogr. A. 1218, 7511–7520 (2011)

    Article  Google Scholar 

  15. Japon-Lujan, R., Luque-Rodriguez, J.M., Luque, M.D., Castro, D.: Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. J. Chromatogr. A. 1108, 76–82 (2006)

    Article  Google Scholar 

  16. Khemakhem, I., Ahmad-Qasem, M.H., Barrajón-Catalán, E., Micol, V., García-Pérez, J.V., Ayadi, M.A., Bouaziz, M.: Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason. Sonochem. 34, 466–473 (2017)

    Article  Google Scholar 

  17. Chan, C.H., Yusoff, R., Ngoh, G.C.: Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem. Eng. Res. Des. 92, 1169–1186 (2014)

    Article  Google Scholar 

  18. Esclapez, M.D., García-Pérez, J.V., Mulet, A., Cárcel, J.A.: Ultrasound-assisted extraction of natural products. Food. Eng. Rev. 3, 108–115 (2011)

    Article  Google Scholar 

  19. Ahmad-Qasem, M.H., Ahmad-Qasem, B.H., Barrajón-Catalán, E., Micol, V., Cárcel, J.A., García-Pérez, J.V.: Drying and storage of olive leaf extracts. Influence on polyphenols stability. Ind. Crops Prod. 79, 232–239 (2016)

    Article  Google Scholar 

  20. Filková, I., Huang, L.X., Mujumdar, A.S.: Industrial spray drying systems. In: Mujumdar, A.S. (ed.) Handbook of industrial drying, pp. 215–256. CRC Press, London (2007)

    Google Scholar 

  21. Sosnik, A., Seremeta, K.P.: Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 223, 40–54 (2015)

    Article  Google Scholar 

  22. Goula, A.M., Adamopoulos, K.G.: Influence of spray drying conditions on residue accumulation-simulation using CFD. Dry. Technol. 22, 1107–1128 (2004)

    Article  Google Scholar 

  23. Goula, A.M., Adamopoulos, K.G.: A new technique for spray drying orange juice concentrate. Innov. Food Sci. Emerg. Technol. 11, 342–351 (2010)

    Article  Google Scholar 

  24. Bhandari, B.R., Senoussi, A., Dumoulin, E.D., Lebert, A.: Spray drying of concentrated fruit juices. Dry. Technol. 11, 1081–1092 (1993)

    Article  Google Scholar 

  25. Bhandari, B.R., Datta, N., Howes, T.: Problems associated with spray drying of sugar-rich foods. Dry. Technol. 15, 671–685 (1997)

    Article  Google Scholar 

  26. Papadakis, S., Gardeli, C., Tzia, C.: Spray drying of raisin juice concentrate. Dry. Technol. 24, 173–180 (2006)

    Article  Google Scholar 

  27. Goula, A.M., Adamopoulos, K.G.: Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Dry. Technol. 26(6), 714–725 (2008)

    Article  Google Scholar 

  28. Goula, A.M., Adamopoulos, K.G.: Spray drying of tomato pulp: effect of feed concentration. Dry. Technol. 22, 2309–2330 (2004)

    Article  Google Scholar 

  29. Goula, A.M., Adamopoulos, K.G.: Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Dry. Technol. 26(6), 726–737 (2008)

    Article  Google Scholar 

  30. Kaderides, K., Goula, A.M., Adamopoulos, K.G.: A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 31, 204–215 (2015)

    Article  Google Scholar 

  31. Goula, A.M., Adamopoulos, K.G.: Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. J. Food Eng. 66, 35–42 (2005)

    Article  Google Scholar 

  32. Papoti, V.T., Tsimidou, M.Z.: Looking through the qualities of a fluorimetric assay for the total phenol content estimation in virgin olive oil, olive fruit or leaf polar extract. Food. Chem. 112(1), 246–252 (2009)

    Article  Google Scholar 

  33. Goula, A.M., Adamopoulos, K.G., Kazakis, N.A.: Influence of spray drying conditions on tomato powder properties. Dry. Technol. 22(5), 1129–1151 (2004)

    Article  Google Scholar 

  34. Eren, I., Kaymak-Ertekin, F.: Optimization of osmotic dehydration of potato using response surface methodology. J. Food Eng. 79, 344–352 (2007)

    Article  Google Scholar 

  35. Derringer, G., Suich, R.: Simutaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980)

    Article  Google Scholar 

  36. Costa, N.R., Lourenço, J., Pereira, Z.L.: Desirability function approach: a review and performance evaluation in adverse conditions. Chemom. Intell. Lab. Syst. 7, 234–244 (2011)

    Article  Google Scholar 

  37. Erbay, Z., Koca, N., Kaymak-Ertekin, F., Ucuncu, M.: Optimization of spray drying process in cheese powder production. Food Bioprod. Process. 93, 156–165 (2015)

    Article  Google Scholar 

  38. Erbay, Z., Icier, F.: Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Dry. Technol. 27, 416–427 (2009)

    Article  Google Scholar 

  39. Tonon, R.V., Grosso, C.R.F., Hubinger, M.D.: Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 44(1), 282–289 (2011)

    Article  Google Scholar 

  40. Frascareli, E.C., Silva, V.M., Tonon, R.V., Hubinger, M.D.: Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod. Process. 90, 413–424 (2012)

    Article  Google Scholar 

  41. Cavalheiro, C.V., Picoloto, R.S., Cichoski, A.J., Wagner, R., Menezes, C.R., Zepka, L.Q., Croce, D.M., Barin, J.S.: Olive leaves offer more than phenolic compounds: fatty acids and mineral composition of varieties from Southern Brazil. Ind. Crops Prod. 71, 122–127 (2015)

    Article  Google Scholar 

  42. Goula, A.M., Karapantsios, T.D., Achilias, D.S., Adamopoulos, K.G.: water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 85, 73–83 (2008)

    Article  Google Scholar 

  43. Downton, D.P., Flores-Luna, J.L., King, C.J.: Mechanism of stickiness in hygroscopic, amorphous powders. Ind. Eng. Chem. Fundam. 21, 447–451 (1982)

    Article  Google Scholar 

  44. Shrestha, A.K., Ua-arak, T., Adhikari, B.R., Howes, T., Bhandari, B.R.: Glass transition behavior of spray dried orange juice powder measures by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop. 10, 661–673 (2007)

    Article  Google Scholar 

  45. Werner, S.R.L., Jones, J.R., Paterson, A.H.J.: Stickiness of maltodextrins using probe tack test during in-situ drying. J. Food Eng. 80, 859–868 (2007)

    Article  Google Scholar 

  46. Bhandari, B.R., Datta, N., Crooks, R., Howes, T., Rigby, S.: A semi-empirical approach to optimise the quantity of drying aids required to spray dry sugar-rich foods. Dry. Technol. 15(10), 2509–2525 (1997)

    Article  Google Scholar 

  47. Zareifard, M.R., Niakousari, M., Shokrollahi, Z., Javadian, S.: A feasibility study on the drying of lime juice: the relationship between the key operating parameters of a small laboratory spray dryer and product quality. Food Bioprocess Technol. 5, 1896–1906 (2012)

    Article  Google Scholar 

  48. Goula, A.M., Adamopoulos, K.G.: Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery. J. Food Eng. 66, 25–34 (2005)

    Article  Google Scholar 

  49. Goula, A.M., Adamopoulos, K.G.: Spray drying performance of a laboratory spray dryer for tomato powder preparation. Dry. Technol. 21, 1273–1289 (2003)

    Article  Google Scholar 

  50. Sadripour, M., Rahimi, A., Hatamipour, M.S.: Experimental study and CFD modeling of wall deposition in a spray dryer. Dry. Technol. 30, 574–582 (2012)

    Article  Google Scholar 

  51. Telang, A.M., Thorat, B.N.: Optimization of process parameters for spray drying of fermented milk soy milk. Dry. Technol. 28(12), 1445–1456 (2010)

    Article  Google Scholar 

  52. Nath, S., Satpathy, G.R.: A systematic approach for investigation of spray drying processes. Dry. Technol. 16(6), 1173–1193 (1998)

    Article  Google Scholar 

  53. Liang, B., King, C.J.: Factors influencing flow patterns, temperature fields and consequent drying rates in spray drying. Dry. Technol. 9(1), 1–25 (1991)

    Article  Google Scholar 

  54. Phisut, N.: Spray drying technique of fruit juice powder: some factors influencing the properties of product. Int. Food Res. J. 19, 1297–1306 (2012)

    Google Scholar 

  55. Quek, S.Y., Chok, N.K., Swedlund, P.: The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 46, 386–392 (2007)

    Article  Google Scholar 

  56. Adhikari, B., Howes, T., Bhandari, B.R., Troung, V.: Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: experiments and modelling. J. Food Eng. 62, 53–68 (2004)

    Article  Google Scholar 

  57. Ozdikicierler, O., Dirim, S.N., Pazir, F.: The effects of spray drying process parameters on the characteristic process indices and rheological powder properties of microencapsulated plant (Gypsophila) extract powder. Powder Technol. 253, 474–480 (2014)

    Article  Google Scholar 

  58. Kwapinska, M., Zbicinski, I.: Prediction of final product properties after cocurrent spray drying. Dry. Technol. 23, 1653–1665 (2005)

    Article  Google Scholar 

  59. Walton, D.E.: The morphology of spray-dried particles-a qualitative view. Dry. Technol. 18(9), 1943–1986 (2000)

    Article  Google Scholar 

  60. Nijdam, J.J., Langrish, T.A.G.: The effect of surface composition on the functional properties of milk powder. J. Food Eng. 77(4), 919–925 (2006)

    Article  Google Scholar 

  61. Masters, K.: Spray drying fundamentals: process stages and layouts, spray drying handbook, pp. 21–53. Halsted Press, New York (1979)

    Google Scholar 

  62. Chegini, G.R., Ghobadian, B.: Effect of spray drying conditions on physical properties of orange juice powder. Dry. Technol. 23, 657–668 (2005)

    Article  Google Scholar 

  63. Hogan, S.A., McNamee, B.F., O’Riordan, E.D., O’Sullivan, M.: Emulsification and micro-encapsulation properties of sodium caseinate/carbohydrate blends. Int. Dairy J. 11(3), 137–144 (2001)

    Article  Google Scholar 

  64. Tonon, R.V., Brabet, C., Hubinger, M.D.: Influence of process conditions on the physicochemical properties of acai (Euterpe Oleraceae Mart.) powder produced by spray drying. J. Food Eng. 88, 411–418 (2008)

    Article  Google Scholar 

  65. Rodriguez-Hernandez, G.R., Gonzalez-Garcia, R., Grajales-Lagunes, A., Ruiz-Cabrera, M.A., Abud-Archila, M.: Spray-drying of cactus pear juice (Opuntia streptacantha): effect on the physicochemical properties of powder and reconstituted product. Dry. Technol. 23, 955–973 (2005)

    Article  Google Scholar 

  66. Cai, Y.Z., Corke, H.: Production and properties of spray dried Amaranthus Betacyanin pigments. J. Food. Sci. 65, 1248–1252 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasia M. Goula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiritsakis, K., Goula, A.M., Adamopoulos, K.G. et al. Valorization of Olive Leaves: Spray Drying of Olive Leaf Extract. Waste Biomass Valor 9, 619–633 (2018). https://doi.org/10.1007/s12649-017-0023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0023-x

Keywords

Navigation