Skip to main content

Advertisement

Log in

Integrated Thermal Conversion and Anaerobic Digestion for Sludge Management in Wastewater Treatment Plants

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study presented a techno-economic evaluation of the thermal conversion of sludge and digestate integrated with anaerobic digestion (AD) as a means of waste volume reduction, carbon emissions mitigation and energy recovery in wastewater treatment plants. The study was supported by empirical data and thermodynamic modelling of processes involved in sludge conversion. A gasification plant (6 MWel) with combustion engines produced sufficient power for treating wastewater (1.6 Mp.e.) and 130 tpd dry sludge. The integration of AD with gasification increased total energy coverage by up to 46%. Treatment costs between €132 and 210 dry t−1 were achieved and the associated levelised costs of electricity (23–85c kWh−1) were within the cost range known for biomass digestion and other CHP technologies. Biomass and waste co-processing was evaluated in order to avoid heat and electricity deficits due to variations in sludge availability and properties, showing potential for reducing carbon footprint and associated electricity costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eurostat: Generation of waste by economic activity: Water collection, treatment and supply, sewerage, remediation and other waste management services. (2012)

  2. Shannon, D., Byrne, N., Flynn, D.: Focus on Urban Waste Water Treatment in 2013. Environmental Protection Agency, Wexford (2014)

    Google Scholar 

  3. Houillon, G., Jolliet, O.: Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. J. Cleaner Prod. 13, 287–299 (2005)

    Article  Google Scholar 

  4. Qiao, W., Yan, X., Ye, J., Sun, Y., Wang, W., Zhang, Z.: Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 36, 3313–3318 (2011)

    Article  Google Scholar 

  5. Berglund, M., Börjesson, P.: Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy. 30, 254–266 (2006)

    Article  Google Scholar 

  6. Burrowes, P., Constantine, T., Kraemer, J., Dangtran, K.: Energy recovery from thermal treatment: to digest or not to digest: is this sustainable? Proc. Water Environ. Fed., 2010, 7463–7482 (2010)

    Article  Google Scholar 

  7. Stillwell, A., Hoppock, D., Webber, M.: Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus. Sustainability. 2, 945 (2010)

    Article  Google Scholar 

  8. Kopyscinski, J., Schildhauer, T.J., Biollaz, S.M.A.: Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel. 89, 1763–1783 (2010)

    Article  Google Scholar 

  9. Campoy, M., Gómez-Barea, A., Ollero, P., Nilsson, S.: Gasification of wastes in a pilot fluidized bed gasifier. Fuel Process. Technol. 121, 63–69 (2014)

    Article  Google Scholar 

  10. Petersen, I., Werther, J.: Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed. Chem. Eng. Process. 44, 717–736 (2005)

    Article  Google Scholar 

  11. Werther, J., Ogada, T.: Sewage sludge combustion. Prog. Energy Combust. Sci. 25, 55–116 (1999)

    Article  Google Scholar 

  12. Stoica, A., Sandberg, M., Holby, O.: Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills. Bioresour. Technol. 100, 3497–3505 (2009)

    Article  Google Scholar 

  13. Zwahr, H.: Ways to improve the efficiency of waste to energy plants for the production of electricity, heat and reusable materials, 11th North American waste-to-energy conference. The American Society of Mechanical Engineers, Tampa (2003)

    Google Scholar 

  14. Dangtran, K., Takmaz, L., Pham, H., Bergel, J.Y., Welp, J., Burrowes, P.: Overview of municipal sludge fluid bed incineration in North America—from green to greener—the Lakeview, the Duffin Creek and the Southerly experiences. Water Sci. Technol. 63, 2213–2218 (2011)

    Article  Google Scholar 

  15. Cao, Y., Pawłowski, A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 16, 1657–1665 (2012)

    Article  Google Scholar 

  16. Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., Zabaniotou, A.: A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl. Energy. 148, 32–38 (2015)

    Article  Google Scholar 

  17. Lacroix, N., Rousse, D.R., Hausler, R.: Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery. Waste Manag. Res. 32, 608–613 (2014)

    Article  Google Scholar 

  18. Gnanendra, P.M., Ramesha, D.K., Dasappa, S.: Preliminary investigation on the use of biogas sludge for gasification. Int. J. Sustain. Energy. 31, 251–267 (2012)

    Article  Google Scholar 

  19. Fernandez-Lopez, M., Puig-Gamero, M., Lopez-Gonzalez, D., Avalos-Ramirez, A., Valverde, J., Sanchez-Silva, L.: Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes. Bioresour. Technol. 182, 184–192 (2015)

    Article  Google Scholar 

  20. Dogru, M., Midilli, A., Howarth, C.R.: Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Process. Technol. 75, 55–82 (2002)

    Article  Google Scholar 

  21. Nilsson, S., Gómez-Barea, A., Fuentes-Cano, D., Ollero, P.: Gasification of biomass and waste in a staged fluidized bed gasifier: modeling and comparison with one-stage units. Fuel. 97, 730–740 (2012)

    Article  Google Scholar 

  22. Jahirul, M., Rasul, M., Chowdhury, A., Ashwath, N.: Biofuels production through biomass pyrolysis—a technological review. Energies, 5, 4952–5001 (2012)

    Article  Google Scholar 

  23. Woolf, D., Lehmann, J., Fisher, E.M., Angenent, L.T.: Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environ. Sci. Technol. 48, 6492–6499 (2014)

    Article  Google Scholar 

  24. Li, H., Chen, Q., Zhang, X., Finney, K.N., Sharifi, V.N., Swithenbank, J.: Evaluation of a biomass drying process using waste heat from process industries: a case study. Appl. Therm. Eng. 35, 71–80 (2012)

    Article  Google Scholar 

  25. Fiaschi, D., Lombardi, L.: Integrated Gasifier Combined Cycle Plant with Integrated CO2-H2S Removal: Performance Analysis, Life Cycle Assessment and Exergetic Life Cycle Assessment. Int. J. Appl. Thermodyn. 5, 13–24 (2002)

    Google Scholar 

  26. Jaworek, A., Krupa, A., Czech, T.: Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. J. Electrostat. 65, 133–155 (2007)

    Article  Google Scholar 

  27. Parker, K.R.: Applied electrostatic precipitation. Springer Science & Business Media, Berlin (2012)

  28. USEPA: Air pollution control technology fact sheet

  29. Forzatti, P.: Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A. 222, 221–236 (2001)

    Article  Google Scholar 

  30. Darrow, K., Tidball, R., Wang, J., Hampson, A.: Catalog of CHP Technologies. U.S. Environmental Protection Agency, Combined Heat and Power Partnership (2015)

  31. Lantz, M.: The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies. Appl. Energy. 98, 502–511 (2012)

    Article  Google Scholar 

  32. Taamallah, S., Vogiatzaki, K., Alzahrani, F.M., E.M.A. Mokheimer, Habib, M.A., Ghoniem, A.F.: Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl. Energy. 154, 1020–1047 (2015)

    Article  Google Scholar 

  33. ECN: Phyllis2: database for biomass and waste (2015)

  34. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta. 544, 191–198 (2005)

    Article  Google Scholar 

  35. Jand, N., Brandani, V.: P.U. Foscolo, Thermodynamic Limits and Actual Product Yields and Compositions in Biomass Gasification Processes. Ind. Eng. Chem. Res. 45, 834–843 (2006)

    Article  Google Scholar 

  36. Campoy, M., Gómez-Barea, A., Vidal, F.B., Ollero, P.: Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Process. Technol. 90, 677–685 (2009)

    Article  Google Scholar 

  37. Kersten, S.R.A., Prins, W., van der Drift, A., van Swaaij, W.P.M.: Experimental fact-finding in CFB biomass gasification for ECN’s 500 kWth pilot plant. Ind. Eng. Chem. Res. 42, 6755–6764 (2003)

    Article  Google Scholar 

  38. Li, X.T., Grace, J.R., Lim, C.J., Watkinson, A.P., Chen, H.P., Kim, J.R.: Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 26, 171–193 (2004)

    Article  Google Scholar 

  39. Xue, G., Kwapinska, M., Horvat, A., Li, Z., Dooley, S., Kwapinski, W., Leahy, J.J.: Gasification of miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energy Fuels. 28, 1121–1131 (2014)

    Article  Google Scholar 

  40. Di Blasi, C.: Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 35, 121–140 (2009)

    Article  Google Scholar 

  41. Yassin, L., Lettieri, P., S.J.R. Simons, Germanà, A.: Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chem. Eng. J. 146, 315–327 (2009)

    Article  Google Scholar 

  42. Bridgwater, A.V., Toft, A.J., Brammer, J.G.: A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 6, 181–246 (2002)

    Article  Google Scholar 

  43. European Environment Agency: Typical charge (gate fee and landfill tax) for legal landfilling of non-hazardous municipal waste in EU Member States and regions, European Environment Agency, (2013)

  44. Howley, M., Holland, M., Dineen, D., Cotter, E.: Energy in Ireland 1990–2014. Sustainable Energy Authority of Ireland, Dublin (2015)

    Google Scholar 

  45. Dussan, K., Yang, Q., Zhan, X., Monaghan, R.F.D.: Thermodynamic Evaluation of Anaerobic Digestion and Integrated Gasification for Waste Management and Energy Production within Wastewater Treatment Plants, pp. 847–857. 24th European Biomass Conference and Exhibition, Amsterdam (2016)

    Google Scholar 

  46. Davidsson, Å., la Cour Jansen, J., Appelqvist, B., Gruvberger, C., Hallmer, M.: Anaerobic digestion potential of urban organic waste: a case study in Malmö. Waste Manag. Res. 25, 162–169 (2007)

    Article  Google Scholar 

  47. Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A.: Trends of Syngas as a fuel in internal combustion engines. Adv. Mech. Eng., 6, 401587 (2014)

    Article  Google Scholar 

  48. Hjort-Gregersen, K.: Centralized Biogas Plants Integrated Energy Production, Waste Treatment and Nutrient Redistribution Facilities. Danish Institute of Agricultural and Fisheries Economics, Copenhagen (1999)

  49. Walla, C., Hopfner-Sixt, K., Amon, T., Schneeberger, W.: Ökonomisches Monitoring von Biogasanlagen in Österreich. Agrarische Rundschau. 6, 10–16 (2006)

    Google Scholar 

  50. ARUP: Review of the generation costs and deployment potential of renewable electricity technologies in the UK. Department of Energy and Climate Change, London (2011)

    Google Scholar 

  51. Beddoes, J.C., Bracmort, K.S., Burns, R.T., Lazarus, W.F.: An analysis of energy production costs from anaerobic digestion systems on US livestock production facilities. Nat. Resour. Conserv. Serv. U. S. Dep. Agric. (2007)

  52. MacDonald, M.: UK electricity generation costs update. Mott MacDonald, Brighton (2010)

    Google Scholar 

  53. EIA, U.S.: Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015, U.S. Energy Information Administration, (2015)

  54. RTI International: Greenhouse gas emissions estimation methodologies for biogenic emissions from selected source categories: solid waste disposal, wastewater treatment and ethanol fermentation. U.S. Environmental Protection Agency, Washington, D.C. (2010)

    Google Scholar 

  55. Koornneef, J., Junginger, M., Faaij, A.: Development of fluidized bed combustion—an overview of trends, performance and cost. Prog. Energy Combust. Sci. 33, 19–55 (2007)

    Article  Google Scholar 

  56. EPA, Urban Waste: Water Treatment in 2014. Environmental Protection Agency-Ireland, Dublin (2015)

  57. Howley, M., Holland, M.: Electricity & gas prices in Ireland: 1st semester (January–June) 2015. Sustainable Energy Authority of Ireland, Dublin (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge technical discussions and contributions by Fiona Lane from Irish Water and Mick Henry, Aisling O’Connor and Eamonn Merriman from Environmental Protection Agency of Ireland.

Funding

This work was supported by the Environmental Protection Agency of Ireland (Grant Number 2014-RE-DS-3), the Irish Research Council (EPSPD-2015-54), Science Foundation Ireland via the Research Centre for Marine and Renewable Energy in Ireland (Spoke 3, Grant Number 12/RC/2302), and Gas Networks Ireland-Gas Innovation Group (Grant Number 2015-SR-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Dussan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dussan, K., Monaghan, R.F.D. Integrated Thermal Conversion and Anaerobic Digestion for Sludge Management in Wastewater Treatment Plants. Waste Biomass Valor 9, 65–85 (2018). https://doi.org/10.1007/s12649-016-9812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9812-x

Keywords

Navigation