Skip to main content
Log in

Enzymatic Bioremediation of Effluent from Sugarcane Bagasse Soda Delignification Process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work aims to evaluate the recovery of soluble lignin from an effluent produced in the alkaline delignification of sugarcane bagasse. The lignin polymerization was carried out using different substract-enzyme relation, namely 0.05 and 1.8 mg soluble lignin for peroxidase activity, and different H2O2 concentration, namely 0.18 and 2.1 mol of H2O2 per peroxidase unit, furthermore was achieved using horseradish peroxidase and a preliminary study using laccase produced by Trametes versicolor. The highest lignin polymerization yield was 93 % for 50 μg lignin/unit of peroxidase activity and 0.2 μmol of H2O2/unit of peroxidase activity. The polymerization process occurred after a considerable increase in the molecular weight of lignin (from 415 Da in the effluent to 2,122 Da in the polymer obtained after 30 min of reaction) as demonstrated by gel permeation chromatography. The average molecular weight of the obtained polymer changed as a function of reaction time, which of 0, 0.5, 4.0, 8.0, 16.0 and 42.0 h produced lignin polymers with 415, 2,122, 1,576, 1,150, 794 and 4,595 Da, respectively. The preliminary treatment study of the effluent with a culture broth of T. versicolor with laccase increased the average molecular weight of soluble lignin from 415 to 1,150 Da, however the polymerization catalyzed by laccase was not accomplished by the effective lignin polymerization followed by an efficient separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. CONAB (National Supply Company): The sugarcane introduction in Brazil will reach a new record. http://www.conab.gov.br (2011). Accessed 12 Sept 2012

  2. Goldstein, I.S.: Organic Chemicals from Biomass. CRC Press, Boca Raton (1981)

    Google Scholar 

  3. Mussato, S.I., Fernandes, M., Milagres, A.M.F., Roberto, I.C.: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer‘s spent grain. Enzyme Microb. Technol. 34, 124–129 (2008)

    Article  Google Scholar 

  4. Cherubini, F., Strømman, A.H.: Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuel Bioprod Bioref. 5, 548–561 (2011). doi:10.1002/bbb.297

    Article  Google Scholar 

  5. Canilha, L., Santos, V.T.O., Rocha, G.J.M., Silva, J.B.A., Giulietti, M., Silva, S.S., et al.: A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J. Ind. Microbiol. Biotechnol. 38, 1467–1475 (2011)

    Article  Google Scholar 

  6. Paturau, J.M.: By-products of the Cane Sugar Industry, 3rd edn. Elsevier, Amsterdam (1989)

    Google Scholar 

  7. Sanchez, O.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99(13), 5270–5295 (2008)

    Article  Google Scholar 

  8. Pietrobon, V.C.: Hidrólise do bagaço de cana-de-açúcar pré-tratado com ácido e álcali utilizando enzimas microbianas comerciais. Universidade de São Paulo, Master Dissertation, Piracicaba (2008)

    Google Scholar 

  9. Rocha, G.J.M.: Polimerização enzimática de lignina solúvel contida em um efluente proveniente da deslignificação alcalina de bagaço de cana. Universidade de São Paulo, Master Dissertation, São Paulo (1995)

    Google Scholar 

  10. Belgacem, N.M., Blayo, A., Gandini, A.: Organosolv lignin a filler in inks, varnishes and paints. Ind Crop Prod. 18, 145–153 (2004)

    Article  Google Scholar 

  11. Stewart, D.: Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod. 27, 202–207 (2008)

    Article  Google Scholar 

  12. The International Lignin Institute: About Lignin. http://www.ili-lignin.com/aboutlignin.php (2009). Accessed 06 July 2012

  13. Northey, R.A.: Low cost uses of lignin in materials and chemicals from biomass. Am. Chem. Soc. Symp. 476, 146–175 (1968)

    Google Scholar 

  14. Monteil-Rivera, F., Phuong, M., Ye, M., Halasz, A., Hawari, J.: Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod. 41, 356–364 (2012)

    Article  Google Scholar 

  15. Schuchardt, U., Rodrigues, J.A.R., Cotrim, A.R., Costa, J.L.M.: Liquefaction of hydrolytic eucalyptus lignin with formate in water, using batch and continuous- flow reactors. Bioresour. Technol. 44, 123–129 (1993)

    Article  Google Scholar 

  16. Vassão, D.G., Davin, L.B., Lewis, N.G.: Metabolic Engineering of Plant Allyl/Propenyl Phenol and Lignin Pathways: Future Potential for Biofuels/Bioenergy, Polymer Intermediates and Specialty Chemicals?. Elsevier Publishers, Oxford, UK (2007)

    Google Scholar 

  17. Mattinen, M.L., Suortti, T., Gosselink, R., Argyropoulos, D.S., Evtuguin, D., Suurnakki, A., et al.: Lignin polymerization by laccase. Bioresour. 3(2), 549–565 (2008)

    Google Scholar 

  18. Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003)

    Article  Google Scholar 

  19. Weng, J.K., Chapple, C.: The origin and evolution of lignin biosynthesis. New Phytol. 187, 273–285 (2010)

    Article  Google Scholar 

  20. Greppin, H., Penel, C., Gaspart, T.: Molecular and Physical Aspects of Plant Peroxidise, vol. 440. University of Geneva, Geneva (1986)

    Google Scholar 

  21. Wagner, M., Niceli, A.J.: Treatment of a foul condensate from kraft pulping with horseradish peroxidase and hydrogen peroxide. Water. Res. 35(2), 485–495 (2001)

    Article  Google Scholar 

  22. Azevedo, A.M., Martins, V.C., Prazeres, D.M., Vojinović, V., Cabral, J.M., Fonseca, L.P.: Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Ann Rev. 9, 199–247 (2003)

    Article  Google Scholar 

  23. Bania, I., Mahanta, R.: Evaluation of peroxidases from various plant sources. Int. J. Sci. Res. Public. 2(5), 1–4 (2012)

    Google Scholar 

  24. Higuchi, T.: Ito: further studies on phenol oxidase related to the lignin biosynthesis. J. Biochem. 45, 575–579 (1958)

    Google Scholar 

  25. Guerra, A., Ferraz, A., Cotrim, A.R., Silva, F.T.: Polymerization of lignin fragments contained in a model effluent by polyphenol oxidases and horseradish peroxidase/hydrogen peroxide system. Enzyme. Microb. Technol. 26(5–6), 315–323 (2000)

    Article  Google Scholar 

  26. Forss, K., Jokinen, K., Savolainen, M., Williansan, H.: Utilization of Enzymes for Effluent Treatment in the Pulp and Paper Industry, vol. 10. Paperi ja Puu, Helsinki (1989)

    Google Scholar 

  27. Xu, F., Shin, W., Brown, S., Wahleithner, J.A., Sundaram, U.M., Solomon, E.I.: A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophys. Acta 1292, 303–311 (1996)

    Article  Google Scholar 

  28. Madhavi, V., Lele, S.S.: Laccasse: properties and applications. Bioresour. 4(4), 1694–1717 (2009)

    Google Scholar 

  29. Roy-Arcand, L., Archibald, F.S.: Direct dechlorination of chlorophenolic compounds by laccases from Trametes (Coriolus) versicolor. Enzyme Microb. Technol. 13, 194–203 (1991)

    Article  Google Scholar 

  30. Bohlin, C., Lundquist, K., Jönsson, L.J.: Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants. Bioorg. Chem. 37(5), 143–148 (2009)

    Article  Google Scholar 

  31. A. Kunamneni, A. Ballesteros, F.J. Plou, M. Alcalde, Fungal laccase: a versatile enzyme for biotechnological applications. Commun. Curr. Res. Educ. Topic. Trends. Appl. Microbiol. A. Méndez-Vilas (Ed.). 233–245 (2007)

  32. Archibald, F.S., Bourbonnais, R., Jurasek, L., Paice, M.G., Reid, I.D.: Kraft pulp bleaching and delignification by Trametes versicolor. J. Biotechnol. 53, 215–336 (1997)

    Article  Google Scholar 

  33. Davis, S., Burns, R.G.: Decolorization of phenolic effluents by soluble and immobilized phenol oxidases. Appl. Microbiol. Biotechnol. 32, 721–724 (1978)

    Article  Google Scholar 

  34. Silva, F.T.: Obtenção de insumos químicos a partir do aproveitamento integral do bagaço de cana. Unicamp/Instituto de Química, Tese de Doutorado, Campinas (1995)

    Google Scholar 

  35. G.J.M. Rocha, F.T. Silva, U. Schuchardt, Improvement of a rapid UV spectrophotometric method for determination of lignin in alkaline solutions. In: Brazilian Symposium on the chemistry of lignin and other wood components, 3, Belo horizonte, 08–10. Programme and Abstracts, Belo Horizonte, p 73 (1993)

  36. Szkarz, G.D., Antibus, R.K., Sinsabaugh, R.L., Linkins, A.: Purification of phenol oxidases and peroxidases by wood rotting fungi Mycologie. New York 81(2), 234–240 (1989)

    Google Scholar 

  37. C. Barnett, K. Loferski, C. Wartman, (eds.) Experimental procedures routinely, applied in the wood chemistry laboratory. Department of Forest Products Madison, USA (1982)

  38. Lenz, B.L.: Application of nuclear magnetic resonance spectroscopy to characterization of lignin. Tappi J. 51, 511–519 (1968)

    Google Scholar 

  39. Chen, C.L., Robert, D.: Characterization of lignin by 1H and 13C NMR spectroscopy. Methods Enzyme. 161, 137–175 (1988)

    Article  Google Scholar 

  40. Livernoche, D., et al.: Removal of color from kraft mill wastewaters with cultures of white-rot fungi and with immobilized mycelium of Coriolus versicolor. Biotechnol. Bioeng. 25, 2055–2065 (1983)

    Article  Google Scholar 

  41. Moore, K.L., Moronne, M.M., Mehlhorn, R.: Electron spin resonance of peroxidase activity and kinetics. Arch. Biochem. Biophys. 299, 47–56 (1992)

    Article  Google Scholar 

  42. Goldshimidt, O.: Ultraviolet spectra. In: Sarkanen, K.V., Ludwid, L.H. (eds.) Lignin- Occurrence Formation Structure and Reaction, pp. 241–266. Wiley Interscience, New York (1977)

    Google Scholar 

  43. Fernandez, N., Morck, R., Johnsrud, S.C., Kringstad, K.P.: Carbon-13 NMR study on lignin from bagasse. Holzforschung 44, 35–38 (1990)

    Article  Google Scholar 

  44. Faix, O.: Classification of lignins from different botanical origins by FI–IR spectroscopy. Holzforschung 45, 21–27 (1991)

    Article  Google Scholar 

  45. Atsushi, K., Azuma, J., Koshijima, T.: Lignin- carbohydrate complexes and phenolic acids in bagasse. Holzforshung 38, 141–149 (1984)

    Article  Google Scholar 

  46. Chen, C.L., Robert, D.: Characterization of lignin by 1H and 13C NMR spectroscopy. In: Wood, W.A., Fellog, S. (eds.) Methods in Enzymology 161B. Academic, Orlando (1988)

    Google Scholar 

  47. Ralph, J., Landucci, L.L.: NMR of lignins. In: Heitner, C., Dimmel, D.R. (eds.) Lignins, pp. 137–234. Marcel Dekker, New York (2010)

    Google Scholar 

  48. C.H. Ludwig, Magnetic resonance spectra. In: K.V. Sarkanen, L.H. Ludwid (eds.) Lignin-occurrence formation structure and reaction, New York; Wiley Interscience. p 299–344 (1977)

  49. N. Fernandez, L. Suty, Studies in sugar cane bagasse lignin. In: The Ekman Days. Int. Symp. Wood. Pulp. Chem. 5, 52–60 (1981)

Download references

Acknowledgments

The authors gratefully acknowledge the support given by Universidade de São Paulo- Escola de Engenharia de Lorena- EEL-USP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Jackson de Moraes Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, G.J.M., Nascimento, V.M. & da Silva, V.F.N. Enzymatic Bioremediation of Effluent from Sugarcane Bagasse Soda Delignification Process. Waste Biomass Valor 5, 919–929 (2014). https://doi.org/10.1007/s12649-014-9316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9316-5

Keywords

Navigation