Skip to main content
Log in

Characterization of Protein-Rich Hydrolysates Produced Through Microbial Conversion of Waste Feathers

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The poultry industry generates huge amounts of feather waste, which needs appropriate management to avoid environmental harm. Keratinolytic potential of Chryseobacterium sp. kr6 and Bacillus sp. kr16 was exploited for feathers bioconversion to produce protein hydrolysates. Increasing feather concentrations (10, 20, or 50 g/L) had minor effects on feather degradation by strain kr6, although the performance of strain kr16 was diminished as the feather concentration increased in culture media. At 50 g/L, strain kr6 degraded 75 % of the feathers after 96 h, and strain kr16 degraded 21 %. The feather-degrading efficiency of Chryseobacterium sp. kr6 was corroborated by a direct relationship between feather concentration and the content of released soluble protein and free amino acids, in comparison to Bacillus sp. kr16. In vitro analyses were performed to postulate feather hydrolysates as animal feed supplements. Digestibility of the hydrolysates was lower when compared to controls (soy protein and casein), but higher than feather meal (FM), which is a usual ingredient of animal feed. Methionine was the first limiting essential amino acid in the hydrolysates and FM; however, the protein digestibility-corrected amino acid scoring was higher for the hydrolysates. Predicted protein efficiency ratio and biological value of kr6 hydrolysates were higher than kr16 hydrolysates and FM. Hydrolysates produced through feathers bioprocessing could be considered as interesting protein-rich resources for animal feed, thus representing an alternative for the valorization of waste feathers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daroit, D.J., Brandelli, A.: A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34, 372–384 (2014)

    Article  Google Scholar 

  2. Lasekan, A., Abu Bakar, F., Hashim, D.: Potential of chicken byproducts as sources of useful biological resources. Waste Manag 33, 552–565 (2013)

    Article  Google Scholar 

  3. Vasileva-Tonkova, E., Gousterova, A., Neshev, G.: Ecologically safe method for improved feather wastes biodegradation. Int. Biodeterior. Biodegrad. 63, 1008–1012 (2009)

    Article  Google Scholar 

  4. Singh, C.J.: Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia 156, 151–156 (2002)

    Article  Google Scholar 

  5. Wang, J.Z., Yue, J.Y., Zhang, C.H., Jia, W., Li, X., Sun, Z.: Preparation of peptone from chicken bone residue by using natural pancreas as catalyst. J. Chem. Technol. Biotechnol. (2016). doi:10.1002/jctb.4900

    Google Scholar 

  6. Taskin, M., Kurbanoglu, E.B.: Evaluation of waste chicken feathers as peptone source for bacterial growth. J. Appl. Microbiol. 111, 826–834 (2011)

    Article  Google Scholar 

  7. Freeman, S.R., Poore, M.H., Middleton, T.F., Ferket, P.R.: Alternative methods for disposal of spent laying hens: evaluation of the efficacy of grinding, mechanical deboning, and of keratinase in the rendering process. Bioresour. Technol. 100, 4515–4520 (2009)

    Article  Google Scholar 

  8. Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A.: Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126, 135–144 (2006)

    Article  Google Scholar 

  9. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S.: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66, 1–11 (1998)

    Article  Google Scholar 

  10. Ugwuanyi, J.O., Harvey, L.M., McNeil, B.: Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillus stearothermophilus. Bioresour. Technol. 99, 6974–6985 (2008)

    Article  Google Scholar 

  11. Shrivastava, B., Thakur, S., Khasa, Y.P., Gupte, A., Puniya, A.K., Kuhad, R.C.: White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22, 823–831 (2011)

    Article  Google Scholar 

  12. Brandelli, A., Daroit, D.J., Riffel, A.: Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85, 1735–1750 (2010)

    Article  Google Scholar 

  13. Bertsch, A., Coello, N.: A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 96, 1703–1708 (2005)

    Article  Google Scholar 

  14. Riffel, A., Lucas, F., Heeb, P., Brandelli, A.: Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179, 258–265 (2003)

    Article  Google Scholar 

  15. Werlang, P.O., Brandelli, A.: Characterization of a novel feather-degrading Bacillus sp. strain. Appl. Biochem. Biotechnol. 120, 71–79 (2005)

    Article  Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  17. Moore, S., Stein, W.H.: A modified ninhidrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211, 907–913 (1957)

    Google Scholar 

  18. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, procedure 960.52. 15th ed. AOAC, Washington (1990)

  19. Lucas, B., Sotel, A.: Effect of different alkalis, temperature, and hydrolysis on food. Anal. Biochem. 109, 193–197 (1980)

    Article  Google Scholar 

  20. Chobert, J.M., Bertrand-Harb, C., Nicolas, M.G.: Solubility and emulsifying properties of casein and whey proteins modified enzymatically by trypsin. J. Agric. Food Chem. 36, 883–892 (1988)

    Article  Google Scholar 

  21. Ikeda, K., Matsuda, Y., Katsumaru, A., Teranishi, M., Yamamoto, T., Kishida, M.: Factors affecting protein digestibility in soybean foods. Cereal Chem. 72, 401–405 (1995)

    Google Scholar 

  22. Abdul-Hamid, A., Bakar, J., Bee, G.H.: Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chem. 78, 69–74 (2002)

    Article  Google Scholar 

  23. Morup, I.K., Olesen, E.S.: New method for prediction of protein value from essential amino acid pattern. Nutr. Rep. Int. 13, 355–365 (1976)

    Google Scholar 

  24. Alsmeyer, R.H., Cunningham, A.E., Happich, M.L.: Equations predict PER from amino acid analysis. Food Technol. 28, 34–38 (1974)

    Google Scholar 

  25. Riffel, A., Daroit, D.J., Brandelli, A.: Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 28, 153–157 (2011)

    Article  Google Scholar 

  26. Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I.H., Dahmen, I., Nasri, M.: Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem. 46, 1731–1737 (2011)

    Article  Google Scholar 

  27. Suntornsuk, W., Suntornsuk, L.: Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour. Technol. 86, 239–243 (2003)

    Article  Google Scholar 

  28. Park, G.T., Son, H.J.: Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. Microbiol. Res. 164, 478–485 (2009)

    Article  Google Scholar 

  29. Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodeterior. Biodegrad. 63, 358–363 (2009)

    Article  Google Scholar 

  30. Arai, K.M., Takahashi, R., Yokote, Y., Akahane, K.: Amino-acid sequence of feather keratin from fowl. Eur. J. Biochem. 132, 501–507 (1983)

    Article  Google Scholar 

  31. Takahashi, K., Yamamoto, H., Yokote, Y., Hattori, M.: Thermal behavior of fowl feather keratin. Biosci. Biotechnol. Biochem. 68, 1875–1881 (2004)

    Article  Google Scholar 

  32. Coward-Kelly, G., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. animal hair. Bioresour. Technol. 97, 1344–1352 (2006)

    Article  Google Scholar 

  33. Paul, T., Das, A., Mandal, A., Halder, S.K., DasMohapatra, P.K., Pati, B.R., Mondal, K.C.: Valorization of chicken feather waste for concomitant production of keratinase, oligopeptides and essential amino acids under submerged fermentation by Paenibacillus woosongensis TKB2. Waste Biomass Valoriz. 5, 575–584 (2014)

    Article  Google Scholar 

  34. Özdemir, G., Sezgin, O.E.: Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface. Colloids Surf. B Biointerfaces 52, 1–7 (2006)

    Article  Google Scholar 

  35. Vasconcelos, A., Cavaco-Paulo, A.: The use of keratin in biomedical applications. Curr. Drug Targets 14, 612–619 (2013)

    Article  Google Scholar 

  36. Istrate, D., Popescu, C., Möller, M.: Non-isothermal kinetics of hard α-keratin thermal denaturation. Macromol. Biosci. 9, 805–812 (2009)

    Article  Google Scholar 

  37. Sindayikengera, S.: Xia, W-S: nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J. Zhejiang Univ. Sci. B 7, 90–98 (2006)

    Article  Google Scholar 

  38. Satterlee, L.D., Marshall, H.F., Tennyson, J.M.: Measuring protein quality. J. Am. Oil Chem. Soc. 56, 103–109 (1979)

    Article  Google Scholar 

  39. Pastor-Cavada, E., Juan, R., Pastor, J.E., Alaiz, M., Vioque, J.: Nutritional characteristics of seed proteins in 15 Lathyrus species (fabaceae) from Southern Spain. LWT. Food Sci. Technol. 44, 1059–1064 (2011)

    Google Scholar 

  40. Palmquist, D.L., Weiss, W.P.: Blood and hydrolyzed feather meals as sources of undegradable protein in high fat diets for cows in early lactation. J. Dairy Sci. 77, 1630–1643 (1994)

    Article  Google Scholar 

  41. Brown, W.F., Pate, F.M.: Cottonseed meal or feather meal supplementation of ammoniated tropical grass hay for yearling cattle. J. Anim. Sci. 75, 1666–1673 (1997)

    Article  Google Scholar 

  42. Bach, A., Calsamiglia, S., Stern, M.D.: Nitrogen metabolism in the rumen. J. Dairy Sci. 88, E9–E21 (2005)

    Article  Google Scholar 

  43. Vente-Spreeuwenberg, M.A.M., Verdonk, J.M.A.J., Bakker, G.C.M., Beynen, A.C., Verstegen, M.W.A.: Effect of dietary protein source on feed intake and small intestinal morphology in newly weaned piglets. Livest. Prod. Sci. 86, 169–177 (2004)

    Article  Google Scholar 

  44. van Heugten, E., van Kempen, T.A.T.G.: Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J. Anim. Sci. 80, 171–178 (2002)

    Article  Google Scholar 

  45. Apple, J.K., Boger, C.B., Brown, D.C., Maxwell, C.V., Friesen, K.G., Roberts, W.J., Johnson, Z.B.: Effect of feather meal on live animal performance and carcass quality and composition of growing-finishing swine. J. Anim. Sci. 81, 172–181 (2003)

    Article  Google Scholar 

  46. El Boushy, A.R., van der Poel, A.F.B., Walraven, O.E.D.: Feather-meal—a biological waste: its processing and utilization as a feedstuff for poultry. Biol. Waste 32, 39–74 (1990)

    Article  Google Scholar 

  47. Wang, J.J., Shih, J.C.H.: Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Ind. Microbiol. Biotechnol. 22, 608–616 (1999)

    Article  Google Scholar 

  48. Zaghloul, T.I., Embaby, A.M., Elmahdy, A.R.: Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: scaling up in a laboratory scale fermentor. Bioresour. Technol. 102, 2387–2393 (2011)

    Article  Google Scholar 

  49. Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., Vasileva-Tonkova, E., Haertlé, T., Nedkov, P.: Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett. Appl. Microbiol. 40, 335–340 (2005)

    Article  Google Scholar 

  50. Grazziotin, A., Pimentel, F.A., Sangali, S., de Jong, E.V., Brandelli, A.: Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Bioresour. Technol. 98, 3172–3175 (2007)

    Article  Google Scholar 

  51. Williams, C.M., Lee, C.G., Garlich, J.D., Shih, J.C.H.: Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poult. Sci. 70, 85–94 (1991)

    Article  Google Scholar 

  52. Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A.: Poultry feather hydrolysate as a protein source for growing rats. Braz. J. Vet. Res. Anim. Sci. 45(1), 61–67 (2008)

    Article  Google Scholar 

  53. Bose, A., Pathan, S., Pathak, K., Keharia, H.: Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valoriz. 5, 595–605 (2014)

    Article  Google Scholar 

  54. Ramakrishnan, J., Balakrishnan, H., Raja, S.T.K., Sundararamakrishnan, N., Renganathan, S., Radha, V.N.: Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution. Braz. J. Microbiol. 42, 825–834 (2011)

    Article  Google Scholar 

  55. Taskin, M., Unver, Y., Firat, A., Ortucub, S., Yildiza, M.: Sheep wool protein hydrolysate: a new peptone source for microorganisms. J. Chem. Technol. Biotechnol. 91, 1675–1680 (2016)

    Article  Google Scholar 

  56. Taskin, M.: A new strategy for improved glutathione production from Saccharomyces cerevisiae: use of cysteine- and glycine-rich chicken feather protein hydrolysate as a new cheap substrate. J. Sci. Food Agric. 93, 535–541 (2013)

    Article  Google Scholar 

  57. Taskin, M., Sisman, T., Erdal, S., Kurbanoglu, E.B.: Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur. Food Res. Technol. 233, 657–665 (2011)

    Article  Google Scholar 

  58. National Research Council (NRC). Nutrient Requirements of Poultry. 9th ed. National Academy Press, Washington (1994)

Download references

Acknowledgments

This work has received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Joner Daroit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, J.L., Werlang, P.O., Daroit, D.J. et al. Characterization of Protein-Rich Hydrolysates Produced Through Microbial Conversion of Waste Feathers. Waste Biomass Valor 8, 1177–1186 (2017). https://doi.org/10.1007/s12649-016-9694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9694-y

Keywords

Navigation