Skip to main content
Log in

Utilization of Agro-Industrial Residues from Palm Oil Industry for Production of Lignocellulolytic Enzymes by Curvularia clavata

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Production of crude palm oil generates a huge amount of palm oil mill effluent (POME) and oil palm empty fruit bunch (OPEFB), leading to adverse environmental impacts. This study seeks to explore the ability of Curvularia clavata in the utilization of such waste to produce lignocellulolytic enzymes such as carboxymethyl cellulase, xylanase, manganese peroxidase, laccase and lignin peroxidase. Raw POME generated from the milling process is discharged to the raw pond, followed by generation of anaerobic POME that is an intermediate step in treatment process. Utilization of raw POME produces higher enzyme activities compared to anaerobic POME. This simultaneously resulted in detoxification and significant removal of COD (67 %), BOD3 (45 %), total polyphenolic (50 %) and ammoniacal nitrogen (61 %) of POME. Under submerged fermentation of OPEFB, C. clavata produces 3569 U/mL of xylanase, which has a potential application in the production of xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alam, M.Z., Mamun, A.A., Qudsieh, I.Y., Muyibi, S.A., Salleh, H.M., Omar, N.M.: Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46(1), 61–64 (2009). doi:10.1016/j.bej.2009.03.010

    Article  Google Scholar 

  2. Belova, O.V., Lisov, A.V., Vinokurova, N.G., Kostenevich, A.A., Sapunova, L.I., Lobanok, A.G., Leontievsky, A.A.: Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: production, properties, and applications for the saccharification of plant material. Appl. Biochem. Microbiol. 50(2), 148–153 (2014). doi:10.1134/s0003683814020057

    Article  Google Scholar 

  3. Chapla, D., Divecha, J., Madamwar, D., Shah, A.: Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J. 49(3), 361–369 (2010). doi:10.1016/j.bej.2010.01.012

    Article  Google Scholar 

  4. Chapla, D., Patel, H., Madamwar, D., Shah, A.: Assessment of a thermostable xylanase from Paenibacillus sp. ASCD2 for application in prebleaching of eucalyptus kraft pulp. Waste Biomass Valor 3(3), 269–274 (2012). doi:10.1007/s12649-012-9112-z

    Article  Google Scholar 

  5. Cheng, J.W.: Penghasilan dan penulenan separa enzim xilanase daripada Aspergillus terreus SUK-1. Universiti Kebangsaan Malaysia, Bangi (2006)

    Google Scholar 

  6. El-Abbassi, A., Hafidi, A., Khayet, M., García-Payo, M.C.: Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination 323, 31–38 (2013). doi:10.1016/j.desal.2012.06.014

    Article  Google Scholar 

  7. Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S., Kosaki, T.: Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem. 57, 109–115 (2013)

    Article  Google Scholar 

  8. Gomes, E., Iembo, T., Silva, R.: Production, characterization and properties of polysaccharide depolymerizing enzymes from a strain of Curvularia inaequalis. Folia Microbiol. 46(4), 303–308 (2001). doi:10.1007/bf02815618

    Article  Google Scholar 

  9. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S.: Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2(16), 6380–6388 (2012). doi:10.1039/c2ra20340e

    Article  Google Scholar 

  10. Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A.: A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. J. Hazard. Mater. 186(1), 891–901 (2011). doi:10.1016/j.jhazmat.2010.11.091

    Article  Google Scholar 

  11. HACH: Hach Water Analysis DR5000 Spectrohotometer Procedures Manual. HACH Company, USA (2005)

    Google Scholar 

  12. Justino, C.I., Duarte, K., Loureiro, F., Pereira, R., Antunes, S.C., Marques, S.M., Gonçalves, F., Rocha-Santos, T.A.P., Freitas, A.C.: Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. J. Hazard. Mater. 172(2–3), 1560–1572 (2009)

    Article  Google Scholar 

  13. Karakaya, A., Laleli, Y., Takaç, S.: Development of process conditions for biodegradation of raw olive mill wastewater by Rhodotorula glutinis. Int. Biodeterior Biodegrad. 75, 75–82 (2012). doi:10.1016/j.ibiod.2012.09.005

    Article  Google Scholar 

  14. Kirk, T., Tien, M.: Lignin-degrading enzyme from Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 9(4), 317–318 (1984)

    Article  Google Scholar 

  15. Lakshmi, G.S., Bhargavi, P.L., Prakasham, R.S.: Sustainable bioprocess evaluation for xylanase production by isolated Aspergillus terreus and Aspergillus fumigatus under solid-state fermentation using oil palm empty fruit bunch fiber. Curr. Trends Biotechnol. Pharm. 5(4), 1434–1444 (2011)

    Google Scholar 

  16. Lim, C., Bay, H., Neoh, C., Aris, A., Abdul Majid, Z., Ibrahim, Z.: Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 20(10), 1–13 (2013). doi:10.1007/s11356-013-1725-7

    Article  Google Scholar 

  17. Ma, A.N., Chow, C.S., Johnm C.K., Ibrahim, A., Isa, Z.: Palm oil mill effluent treatment—a survey. In: Muthurajah, R.N. (ed.) Palm Oil Mill Technology and Effluent Treatment, Kuala Lumpur, Malaysia. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 123–157 (1982)

  18. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). doi:10.1021/ac60147a030

    Article  Google Scholar 

  19. Mittal, A., Mittal, J., Malviya, A., Kaur, D., Gupta, V.K.: Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 343(2), 463–473 (2010). doi:10.1016/j.jcis.2009.11.060

    Article  Google Scholar 

  20. Mohajershojaei, K., Khosravi, A., Mahmoodi, N.M.: Decolorization of dyes using laccase enzyme from single and binary systems. Desalin. Water Treat. 52(10–12), 1895–1902 (2013). doi:10.1080/19443994.2013.792010

    Google Scholar 

  21. MPOB: Review of the Malaysian Oil Palm Industry 2011. Economics and Industry Development Division, Malaysian Palm Oil Board, Kuala Lumpur (2011)

    Google Scholar 

  22. Neoh, C., Lam, C., Lim, C., Yahya, A., Ibrahim, Z.: Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata. Sci. Pollut. Res, Environ (2013). doi:10.1007/s11356-013-2350-1

    Google Scholar 

  23. Neoh, C., Yahya, A., Adnan, R., Abdul Majid, Z., Ibrahim, Z.: Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Environ. Sci. Pollut. Res. 20(5), 2912–2923 (2013). doi:10.1007/s11356-012-1193-5

    Article  Google Scholar 

  24. Noratiqah, K., Madihah, M.S., Aisyah, B.S., Eva, M.S., Suraini, A.A., Kamarulzaman, K.: Statistical optimization of enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochem. Eng. J. 75, 8–20 (2013). doi:10.1016/j.bej.2013.03.007

    Article  Google Scholar 

  25. Ntougias, S., Baldrian, P., Ehaliotis, C., Nerud, F., Antoniou, T., Merhautová, V., Zervakis, G.I.: Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere 88(5), 620–626 (2012)

    Article  Google Scholar 

  26. Palma, C., Contreras, E., Urra, J., Martínez, M.: Eco-friendly Technologies Based on Banana Peel Use for the Decolourization of the Dyeing Process Wastewater. Waste Biomass Valor 2(1), 77–86 (2011). doi:10.1007/s12649-010-9052-4

    Article  Google Scholar 

  27. Rocha, Gd, Nascimento, V., da Silva, V.: Enzymatic bioremediation of effluent from sugarcane bagasse soda delignification process. Waste Biomass Valor 5(6), 919–929 (2014). doi:10.1007/s12649-014-9316-5

    Article  Google Scholar 

  28. Rothschild, N., Levkowitz, A., Hadar, Y., Dosoretz, C.G.: Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 65(2), 483–488 (1999)

    Google Scholar 

  29. Saavedra, M., Benitez, E., Cifuentes, C., Nogales, R.: Enzyme activities and chemical changes in wet olive cake after treatment with Pleurotus ostreatus or Eisenia fetida. Biodegradation 17(1), 93–102 (2006). doi:10.1007/s10532-005-4216-9

    Article  Google Scholar 

  30. Sajith, S., Sreedevi, S., Priji, P., Unni, K., Benjamin, S.: Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann Microbiol (2013). doi:10.1007/s13213-013-0711-0

    Google Scholar 

  31. Samudro, G., Mangkoedihardjo, S.: Review on BOD, COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels. Int. J. Acad. Res. 2(4), 235–239 (2010)

    Google Scholar 

  32. Singh, S., Tyagi, C.H., Dutt, D., Upadhyaya, J.S.: Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. New Biotechnol. 26(3–4), 165–170 (2009). doi:10.1016/j.nbt.2009.09.004

    Article  Google Scholar 

  33. Zucconi, F., Monaco, A., Forte, M.: Phytotoxins during the stabilization of organic matter. In: Gasser, J.K.R. (ed.) Composting of Agricultural and Other Wastes. Elsevier Applied Science Publication, New York (1985)

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Fellowship, Ministry of Science, Technology and Innovation (MOSTI), and Universiti Teknologi Malaysia under the vote number 01E93.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaharah Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neoh, C.H., Lam, C.Y., Yahya, A. et al. Utilization of Agro-Industrial Residues from Palm Oil Industry for Production of Lignocellulolytic Enzymes by Curvularia clavata . Waste Biomass Valor 6, 385–390 (2015). https://doi.org/10.1007/s12649-015-9357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9357-4

Keywords

Navigation