Skip to main content
Log in

Smart Cleaning Properties of a Multi Tolerance Keratinolytic Protease from an Extremophilic Bacillus tequilensis hsTKB2: Prediction of Enzyme Modification Site

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bacillus tequilensis hsTKB2, produced extracellular alkaline (9–10.5), thermostable (50–80 °C), halophilic (0–30 %), organic solvent tolerant keratinolytic protease. The maximum enzyme production was observed in high alkaline condition (pH 10) at 45 °C in sea water as supporting medium and chicken feathers as substrate with cell-immobilization of chitin flakes. The molecular mass of purified enzyme was estimated to be about 59.89 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and MALDI-TOF analysis. The apparent Km for the enzyme activity on keratin was 1.9 mg mL−1. Optimum temperature and pH for keratinolytic protease activity were 70 °C and 10.5 respectively. The effect of organic solvents on the enzyme activity showed that this enzyme was more stable in the presence of non-polar organic solvents than polar solvents. Circular dichroism spectroscopy revealed that at pH 10.5 and temperature 70 °C, the enzyme upholds a typical secondary structure (α-helix 25.23 %, β-sheet 61.02 %, turn 11.97 % and coil 1.78 %). Mn2+ and toluene were influenced the enzyme activity by effecting structural changes. This enzyme folded into its active conformation inside the cell and secreted outside. Furthermore the tolerability with surfactants and commercial solid and liquid detergents appeared to be a favorable approach towards laundry and dishwashing detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Averhoff, B., Müller, V.: Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res. Microbiol. 161, 506–514 (2010)

    Article  Google Scholar 

  2. Banik, R.M., Prakash, M.: Laundery detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159(2), 135–140 (2004)

    Article  Google Scholar 

  3. Maurer, K.H.: Detergent proteases. Curr. Opin. Biotechnol. 15, 330–334 (2004)

    Article  Google Scholar 

  4. Deng, A., Wu, J., Zhang, Y., Zhang, G.Q., Wen, T.Y.: Purification and characterization of a surfactant-stable high alkaline protease from Bacillus sp. B001. Bioresour. Technol. 101, 7100–7106 (2010)

    Article  Google Scholar 

  5. Shivanand, P., Jayaraman, G.: Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem. 44, 1088–1094 (2009)

    Article  Google Scholar 

  6. Paul, T., Das, A., Mandal, A., Halder, S.K., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C.: Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus woosongensis TKB2: a potential additive for laundry detergent. Waste Biomass. Valor. 5, 563–574 (2014)

  7. Paul, T., Halder, S.K., Das, A., Bera, S., Maity, C., Mandal, A., Das, P.S., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C.: Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal. Agric. Biotechnol. 2, 50–57 (2013)

    Google Scholar 

  8. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  9. Riaz, M., Perveen, R., Javed, M.R., Nadeem, H.: Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41, 558–564 (2007)

    Article  Google Scholar 

  10. Das, A., Ghosh, U., Das Mohapatra, P.K., Pati, B.R., Mondal, K.C.: Study on thermodynamics and adsorption kinetics of purified endoglucanase (Cmcase) from Penicilliumnotatum NCIM No-923 produced under mixed solid-state fermentation of waste cabbage and bagasse. Braz. J. Microbiol. 43, 1103–1111 (2012)

    Article  Google Scholar 

  11. Saqib, A.A.N., Hassan, M., Khan, N.F., Baig, S.: Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Proc. Biochem. 45, 641–646 (2010)

    Article  Google Scholar 

  12. Dixon, M., Webb, C.: Enzyme kinetics. In: Dixon, M., Webb, E.C. (eds.) Enzymes, 3rd edn, pp. 47–206. Academic Press, New York (1979)

    Google Scholar 

  13. Iyer, P.V., Ananthanarayan, L.: Enzyme stability and stabilization aqueous and non-aqueous environment. Proc. Biochem. 43, 1019–1032 (2008)

    Article  Google Scholar 

  14. Griffin, H., Dintzis, F.R., Krull, L., Baker, F.L.: A microfibril generating factor from the enzyme complex of Trichodermareesei. Biotechnol. Bioeng. 26, 269–300 (1984)

    Article  Google Scholar 

  15. Bhattacharyya, A., Babu, C.R.: Purification and biochemical characterization of a serine protease inhibitor from Derris trifoliate Lour. Seeds: insight into structural and antimalarial features. Phytochemistry 70, 703–712 (2009)

    Article  Google Scholar 

  16. Singh, S.K., Singh, S.K., Tripathi, V.R., Garg, S.K.: Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Proc. Biochem. 47, 1479–1487 (2010)

    Article  Google Scholar 

  17. Beg, Q.K., Sahai, V., Gupta, R.: Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proc. Biochem. 39, 203–209 (2003)

    Article  Google Scholar 

  18. Sana, B., Ghosh, D., Saha, M., Mukherjee, J.: Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma Proteobacterium isolated from the marine environment of the Sundarbans. Proc. Biochem. 41, 208–215 (2006)

    Article  Google Scholar 

  19. Joo, H.S., Chang, C.S.: Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Proc. Biochem. 40, 1263–1270 (2005)

    Article  Google Scholar 

  20. Hadder, A., Agrebi, R., Bougatef, A., Hmidet, N., SellamiKamoun, A., Nasri, M.: Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol. 100(13), 3366–3373 (2009)

    Article  Google Scholar 

  21. Karen, R., Capes, M.D., Dassarma, S.: Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8, 1–15 (2012)

    Article  Google Scholar 

  22. Doukyu, N., Ogino, H.: Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270–282 (2010)

    Article  Google Scholar 

  23. Thumar, J.T., Singh, S.P.: Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J. Chromatogr. B 854, 198–203 (2007)

    Article  Google Scholar 

  24. Rahman, R.N.Z.R.A., Geok, L.P., Basri, M., Salleh, A.B.: An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzymes Microb. Technol. 39, 1484–1491 (2006)

    Article  Google Scholar 

  25. Badoei-Dalfard, A., Karami, Z.: Screening and isolation of an organic solvent tolerant-protease from Bacillus sp. JER02: activity optimization by response surface methodology. J. Mol. Catal. B Enzym. 89, 15–23 (2013)

    Article  Google Scholar 

  26. Ozturk, S., Ozeren-Morgan, M., Dilgimen, A.S., Denizci, A.A., Arikan, B., Kazan, D.: Alkaline serine protease from halotolerant Bacillus licheniformis BA17. Ann. Microbiol. 59, 83–90 (2009)

    Article  Google Scholar 

  27. Rachadech, W., Navacharoen, A., Ruangsit, W., Pongtharangkul, T., Vangnai, A.: An organic solvent-, detergent-, and thermostable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5. Microbiology 79(5), 620–629 (2010)

    Article  Google Scholar 

  28. Gessesse, A.: The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62, 59–61 (1997)

    Article  Google Scholar 

  29. Singh, J., Batra, N., Sobti, R.C.: Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Proc. Biochem. 36, 781–785 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of UGC-RFSMS Fellowship scheme [F.11-114/2008 (BSR)] for present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab C. Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, T., Das, A., Mandal, A. et al. Smart Cleaning Properties of a Multi Tolerance Keratinolytic Protease from an Extremophilic Bacillus tequilensis hsTKB2: Prediction of Enzyme Modification Site. Waste Biomass Valor 5, 931–945 (2014). https://doi.org/10.1007/s12649-014-9310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9310-y

Keywords

Navigation