Skip to main content
Log in

Utilization of Groundnut Husk as a Solid Substrate for Cellulase Production by Aspergillus niger Using Response Surface Methodology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study employs the use of statistical optimization for development of groundnut husk based medium for enhancement of cellulase production by Aspergillus niger. Initial screening of eleven medium components was carried out using Plackett–Burman design and response surface methodology (RSM) was then used to optimize the significant factors. The concentrations of four medium components that led to the maximum cellulase production as optimized using RSM were 1.60 % wheat flour, 0.04 % Urea, 0.006 % MnSO4·H2O and 0.06 % MgSO4·7H2O. The highest cellulase production in terms of CMCase FPase and β-glucosidase activities were 48.69, 16.70 and 9.85 U/g respectively following this optimization process. Thus, the results obtained in this study demonstrated the potential of utilizing groundnut husk as a substrate with minimal supplementation for enhanced cellulase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ike, M., Park, J., Tabuse, M., Tokuyasu, K.: Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Appl. Microbiol. Biotechnol. 87, 2059–2066 (2010)

    Article  Google Scholar 

  2. Merino, S.T., Cherry, J.: Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95–120 (2007)

    Google Scholar 

  3. Thakur, S., Shrivastava, B., Ingale, S., Kuhad, R.C., Gupte, A.: Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3. Biotech (2012). doi:10.1007/s13205-012-0102-4

    Google Scholar 

  4. El-Bondkly, A.M.A., El-Gendy, M.M.A.: Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie Van Leeuwenhoek 101(2), 331–346 (2012). doi:10.1007/s10482-011-9639-1

    Article  Google Scholar 

  5. Jabasingh, S.A., ValliNachiyar, C.: Optimization of cellulase production by Aspergillus nidulans: application in the biosoftening of cotton fibers. World J. Microbiol. Biotechnol. 27, 85–97 (2011)

    Article  Google Scholar 

  6. Ogel, Z.B., Yarangümeli, K., Dündar, H., Ifrij, I.: Submerged cultivation of Scytalidium thermophilum on complex lignocellulosic biomass for endoglucanase production. Enzyme Microb. Technol. 28(7/8), 689–695 (2001)

    Article  Google Scholar 

  7. Long, C., Ou, Y., Guo, P., Liu, Y., Cui, J., Long, M., Hu, Z.: Cellulase production by solid state fermentation using bagasse with Penicillium decumbens L-06. Ann. Microbiol. 59(3), 517–523 (2009)

    Article  Google Scholar 

  8. Sun, Y., Cheng, J.Y.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  9. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in ligno-cellulose saccharification for bio-ethanol production. Renew. Energ. 34(2), 421–424 (2009)

    Article  Google Scholar 

  10. Bollok, M., Reczey, K.: Cellulase enzyme production by various fungal strains on different carbon sources. Acta Alimentaria 29, 155–168 (2005)

    Google Scholar 

  11. Ariffin, H., Hassan, M.A., Shah, U.K.M., Abdullah, N., Ghazali, F.M., Shirai, Y.: Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J. Biosci. Bioeng. 106(3), 231–236 (2008)

    Article  Google Scholar 

  12. Jatinder, K., Chadha, B.S., Saini, H.S.: Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J. Microbiol. Biotechnol. 22, 15–22 (2006)

    Article  Google Scholar 

  13. Khan, M.M.H., Ali, S., Fakhrul-razi, A., Alam, M.D.: Use of fungi for the bioconversion of rice straw into cellulase enzyme. J. Environ. Sci. Health, Part B 42, 381–386 (2007)

    Article  Google Scholar 

  14. Wen, Z., Liao, W., Chen, S.: Production of cellulase/β-glucosidase by the mixed fungi culture of Trichoderma reesei and Aspergillus phoenicis on dairy manure. Appl. Biochem. Biotechnol. 121/124: 93–104 (2005)

  15. Xu, Z., Bai, Y., Xu, X., Shi, J., Tao, W.: Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World J. Microbiol. Biotechnol. 21, 575–581 (2005)

    Article  Google Scholar 

  16. Sehnem, N.T., de Bittencourt, L.R., Camassola, M., Dillon, A.J.P.: Cellulase production by Penicillium echinulatum on lactose. Appl. Microbiol. Biotechnol. 72, 163–167 (2006)

    Article  Google Scholar 

  17. Alam, M.Z., Mamun, A.A., Qudsieh, I.Y., Muyibi, S.A., Salleh, H.M., Omar, N.M.: Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46, 61–64 (2009)

    Article  Google Scholar 

  18. Prasetyo, J., Sumita, S., Okuda, N., Park, E.Y.: Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus. Appl. Biochem. Biotechnol. 162, 52–61 (2010)

    Article  Google Scholar 

  19. Bansal, N., Tewari, R., Soni, R., Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manage. (Oxford) 32, 1341–1346 (2012)

    Article  Google Scholar 

  20. Rosgaard, L., Pedersen, S., Cherry, J.R., Harris, P., Meyer, A.S.: Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol. Prog. 22, 493–498 (2006)

    Article  Google Scholar 

  21. Sohail, M., Siddiqi, R., Ahmad, A., Khan, S.A.: Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol. 25(6), 437–441 (2009)

    Article  Google Scholar 

  22. Philippoussis, A., Diamantopoulou, P., Papadopoulou, K., Lakhtar, H., Roussos, S., Parissopoulos, G., Papanikolaou, S.: Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J. Microbiol. Biotechnol. 27, 285–297 (2011)

    Article  Google Scholar 

  23. Farinas, C.S., Vitcosque, G.L., Fonseca, R.F., Neto, V.B., Couri, S.: Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind. Crops. Prod. 34, 1186–1192 (2011)

    Article  Google Scholar 

  24. Cai, Y.J., Chapman, S.J., Buswell, J.A., Chang, S.: Production and distribution of endoglucanase, cellobiohydrolase, and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65(2), 553–559 (1999)

    Google Scholar 

  25. Lynd, L.R., Weimer, P.J., Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002). doi:10.1128/MMBR.66.3.506-577.2002

    Article  Google Scholar 

  26. Alam, M.Z., Fakhru’l-Razi, A., Molla, A.H.: Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge. J. Environ. Sci. 16, 132–137 (2004)

    Google Scholar 

  27. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  28. Mandels, M., Andreotti, R.E., Roche, C.: Measurements of saccharifying cellulases. Biotechnol. Bioeng. Symp. 6, 21–23 (1976)

    Google Scholar 

  29. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guowei, S., Man, H., Shikai, S., He, C.: Effect of some factors on production of cellulase by Trichoderma reesei HY07. Procedia Environ. Sci. 8, 357–361 (2011)

    Article  Google Scholar 

  31. Wu, Q.-L., Chen, T., Gan, Y., Chen, X., Zhao, X.-M.: Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl. Microbiol. Biotechnol. 76, 783–794 (2007)

    Article  Google Scholar 

  32. Rajendran, A., Thangavelu, V.: Optimization and modeling of process parameters for lipase production by Bacillus brevis. Food Bioprocess Technol. 5(1), 310–322 (2012)

    Article  Google Scholar 

  33. Desai, J.D., Desai, A.J., Patel, N.P.: Production of cellulases and β-glucosidase by shake culture of S. cytalidium sp. J. Ferment. Technol. 60, 117–124 (1982)

    Google Scholar 

  34. Ruqayyah, T.I.D., Jamal, P., Alam, M.Z., Mirghani, M.E.S.: Valorization of cassava Peels by the white rot fungus Panus tigrinus M609RQY. Aust. J. Basic Appl. Sci. 5(7), 808–816 (2011)

    Google Scholar 

  35. Alemawor, F., Dzogbefia, V., Oddoye, E., Oldham, J.: Effect of Pleurotus ostreatus fermentation on cocoa pod husk composition: influence of fermentation period and Mn2+ supplementation on the fermentation process. Afr. J. Biotechnol. 8(9), 1950–1958 (2010)

    Google Scholar 

  36. Jonathan, S., Fasidi, I.: Effect of carbon, nitrogen and mineral sources on growth of Psathyerella atroumbonata (Pegler), a Nigerian edible mushroom. Food Chem. 72(4), 479–483 (2001)

    Article  Google Scholar 

  37. Bankar, S.B., Bule, M.V., Singhal, R.S., Ananthanarayan, L.: Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food Bioprocess Technol. 2, 344–352 (2009)

    Article  Google Scholar 

  38. Singh, B., Sharma, H.K., Sarkar, B.C.: Optimization of extraction of antioxidants from wheat bran (Triticum spp.) using response surface methodology. J. Food Sci. Technol. 49(3), 294–308 (2012). doi:10.1007/s13197-011-0276-5

    Article  Google Scholar 

  39. Sales, M.R., de Moura, R.B., da Silva, M.F., de Macedo, G.R., Porto, A.L.F.: Cellulase and xylanase production by Aspergillus species. Ann. Microbiol. 61, 917–924 (2011)

    Article  Google Scholar 

  40. Rodhe, A.V., Sateesh, L., Sridevi, J., Venkateswarlu, B., Rao, L.V.: Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw. 3. Biotech 1(4), 207–215 (2011). doi:10.1007/s13205-011-0024-6

    Google Scholar 

  41. Chandra, M., Kalra, A., Sharma, P.K., Sangwan, R.S.: Cellulase production by six Trichoderma spp. Fermented on medicinal plant processings. J. Ind. Microbiol. Biotechnol. 36, 605–609 (2009). doi:10.1007/s10295-009-0544-9

    Article  Google Scholar 

  42. Guerra, G., Casado, M.R.G., Arguelles, J., Sanchez, M.I., Manzano, A.M., Guzman, T.: Cellulase production with sugarcane straw by Trichoderma citrinoviride on solid bed. Sugar Tech. 8(l), 30–35 (2006)

  43. Lo, C., Zhang, Q., Lee, P., Ju, L.: Cellulase Production by Trichoderma reesei using sawdust hydrolysate. Appl. Biochem. Biotechnol. 121/124, 561–574 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the technical staff of Mycology Lab of Department of Crop Protection for their assistance and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salihu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salihu, A., Sallau, A.B., Adamu, A. et al. Utilization of Groundnut Husk as a Solid Substrate for Cellulase Production by Aspergillus niger Using Response Surface Methodology. Waste Biomass Valor 5, 585–593 (2014). https://doi.org/10.1007/s12649-013-9268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9268-1

Keywords

Navigation