Skip to main content
Log in

Neural Models for Optimizing Lignocellulosic Residues Composting Process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Vegetable trimming residues are very plentiful and diverse; however, their recycling involves environmental problems. Producing high quality compost from these residues is a way to make a good use of them. The present work studies the influence of the operating conditions used during a composting process of vegetable trimming residues (aeration, moisture, particle size, composting time), on the evolution of the temperature, pH and CO2 while the compost is producing and on the physico-chemical properties of the final compost (pH, organic matter, Kjeldahl-N, C/N ratio). An adaptive network based fuzzy inference system on basis of the four considered independent variables (aeration, moisture, particle size, composting time) was used to obtain the optima composting conditions which produce the best pH, temperature and CO2 evolution and the highest quality compost. Low aeration contents (0.2 Lair (min kg)−1), intermediate moisture content (55 %), medium-to-low particle size (1–3 cm) were the best operating conditions to obtain maximum temperatures and CO2 production. Moreover, under these conditions, it was obtained compost with satisfactory physico-chemical properties, useful for further agricultural application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhnazarova, S., Kafarov, V.: Experiment Optimization in Chemistry Chemical Engineering. Mir Publisher, Moscow (1982)

    Google Scholar 

  2. Allison, L.E.: Organic carbon. In: Black, C.A., Evans, D.D., White, J.L., Ensiminger, L.E., Clark, F.E., Dinauer, R.C. (eds.) Methods of Soil Analysis Vol II. SSSA Madison, WI (1965)

    Google Scholar 

  3. APHA (American Public Health Association): Standard Methods for the Examination of Water Wastewater. APHA, Washington DC (1995)

  4. Beck-Friis, B., Smårs, S., Jönsson, H., Eklind, Y., Kirchmann, H.: Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics. Compost Sci. Util. 11(1), 41–50 (2003)

    Google Scholar 

  5. Bertoldi De, M., Vallini, G., Pera A.: Technological aspects of composting including modelling and microbiology. In: Gasser, J.K.R. (ed.) Composting of Agricultural and other wastes, pp. 27–40. Elsevier Applied Science Publishers, London (1985)

  6. Bremnen, J.M.: Nitrogen-Total. In: Sparks, D.L. (ed.) Methods of Soil Analysis. SSSA, Madison (1996)

    Google Scholar 

  7. Bueno, P., Tapias, R., López, F., Díaz, M.J.: Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99(11), 5069–5077 (2008)

    Article  Google Scholar 

  8. Bueno, P., Yañez, R., Caparrós, S., Díaz, M.J.: Evaluating environmental parameters for minimum ammonium losses during composting of trimming residues. J. Air Waste Manag. Assoc. 59(7), 790–800 (2009)

    Google Scholar 

  9. Choi, K.: Optimal operating parameters in the composting of swine manure with wastepaper. J. Environ. Sci. Health B 34(6), 975–987 (1999)

    Article  Google Scholar 

  10. Delgado-Rodríguez, M., Ruiz-Montoya, M., Giraldez, I., Cabeza, I.O., López, R., Díaz, M.J.: Effect of control parameters on emitted volatile compounds in municipal solid waste and pine trimmings composting. J. Environ. Sci. Health A. 45(7), 855–862 (2010)

    Article  Google Scholar 

  11. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31(2), 171–192 (2005)

    Article  Google Scholar 

  12. Díaz, M.J., Alfaro, A., García, M.M., Eugenio, M.E., Ariza, J., López, F.: Ethanol pulping from tagasaste (Chamaecytisus proliferus L.F. ssp palmensis). A new promising source for cellulose pulp. Ind. Eng. Chem. Res. 43(8), 1875–1881 (2004)

    Article  Google Scholar 

  13. Díaz, M.J., Eugenio, M.E., Jimenez, L., Madejón, E., Cabrera, F.: Modelling vinasse/cotton waste ratio incubation for optimum composting. Chem. Eng. J. 93(3), 233–240 (2003)

    Article  Google Scholar 

  14. Díaz, M.J., Madejón, E., López, F., López, R., Cabrera, F.: Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem. 37, 1143–1150 (2002)

    Article  Google Scholar 

  15. Ekinci, K., Keener, H.M., Elwell, D.L.: Composting short paper fiber with broiler litter additives. Part I effects of initial pH carbon/nitrogen ratio on ammonia emission. Compost Sci. Util. 8(2), 160–172 (2000)

    Google Scholar 

  16. Emmanouilides, C., Petrou, L.: Identification control of anaerobic digesters using adaptive on-line trained neural networks. Comp. Chem. Eng. J. 21(1), 113–143 (1997)

    Article  Google Scholar 

  17. Gray, K.R., Sherman, K., Biddlestone, A.J.: Review of composting II. The practical. Process Biochem. 6, 22–28 (1971)

    Google Scholar 

  18. Grigatti, M., Ciavatta, C., Gessa, C.: Evolution of organic matter from sewage sludge and garden trimming during composting. Biores. Technol. 91(2), 163–169 (2004)

    Article  Google Scholar 

  19. Haug, R.T.: The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton (1993)

    Google Scholar 

  20. Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling control. Proc. IEEE 83(3), 378–406 (1995)

    Article  Google Scholar 

  21. Jang, J.S.R.: ANFIS adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  22. Jingwen, T., Meijuan, G., Yujuan, X.: The study of compost quality evaluation modeling method based on fuzzy neural network for sewage treatment. In: Eighth ACIS International Conference on Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing, vol. 2, pp. 558–563. Qingdao, China (2007)

  23. Kipp, C.E.: Optimum process parameters for composting sludge. Biocycle 25(9), 39–40 (1992)

    Google Scholar 

  24. Kuhad, R.C., Chandna, P., Singh L., Singh A.: Composting of lignocellulosic waste material for soil amendment. bioaugmentation, biostimulation and biocontrol In: Soil Biology, vol. 28, part 1, pp. 107–128. Springer, Berlin (2011)

  25. Kulcu, R., Yaldiz, O.: Determination of aeration rate kinetics of composting some agricultural wastes. Bioresour. Technol. 93(1), 49–57 (2004)

    Article  Google Scholar 

  26. Liang, C., Das, K.C., McClendon, R.W.: The influence of temperature moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol. 86, 131–137 (2003)

    Article  Google Scholar 

  27. Lynch, J.M.: Substrate availability in the production of composts. In: Hoitink H.A.J., Keener H. (eds.) Proceedings of the International Composting Research Symposium, pp 24–35 (1992)

  28. Madejón, E., Díaz, M.J., López, R., Cabrera, F.: New approaches to establish optimum moisture content for compostable materials. Bioresour. Technol. 85(1), 73–78 (2002)

    Article  Google Scholar 

  29. Merelli, E., Armano, G., Cannata, N.: Agents in bioinformatics computational and systems biology. Brief Bioinf 8(1), 45–59 (2007)

    Article  Google Scholar 

  30. Mulvaney, R.L. Nitrogen-inorganic forms In: Sparks, D.L. (ed.) Methods of Soil Analysis, vol. III, pp. 1123–1184. SSSA, Madison (1996)

  31. Nahm, K.H.: Factors influencing nitrogen mineralization during poultry litter composting calculations for available nitrogen. Worlds Poultry Sci. J. 61(2), 238–255 (2005)

    Article  Google Scholar 

  32. Nakasaki, K., Yaguchi, H., Sasaki, Y., Kubota, H.: Effect of pH control composting of garbage. Waste Manag. Res. 11(2), 117–125 (1993)

    Google Scholar 

  33. Nogueira, W.A., Nogueira, F.N., Devens, D.C.: Temperature pH control in composting of coffee agricultural wastes. Water Sci. Technol. 40(1), 113–119 (1999)

    Article  Google Scholar 

  34. Poincelot, R.P. A scientific examination of the principles practice of composting. Compost Sci. 15(Summer), 24–31 (1974)

    Google Scholar 

  35. Qin, X.S., Huang, G., Chakma, A., Xi, B.: A fuzzy composting process model. J. Air Waste Manag. Assoc. 57(5), 535–550 (2007)

    Article  Google Scholar 

  36. Ranalli, G., Bottura, G., Taddei, P., Marchetti, R., Sorlini, C.: Composting of solid sludge residues from agricultural food industries. Bioindicators of monitoring compost maturity. J. Environ. Sci. Health A. 36(4), 415–436 (2001)

    Google Scholar 

  37. Saber, M., Mohammed, Z., Badr-el-Din, S., Awad, N.: Composting certain agricultural residues to potting soils. J. Ecol. Nat. Environ. 3(3), 78–84 (2011)

    Google Scholar 

  38. Shaw, K., Day, M., Krzymien, M., Mohmad, R., Sheehan, S.: The role of feed composition on the composting process. I. Effect on composting activity. J. Environ. Sci. Health., Part A 34(6), 1341–1367 (1999)

    Article  Google Scholar 

  39. Sikora, L.J., Sower, M.A.: Effect of temperature control on the composting process. J. Environ. Qual. 14, 434–439 (1985)

    Article  Google Scholar 

  40. Tang, L., Zeng, G., Liu, J., Xu, X., Zhang, Y., Shen, G., Li, Y., Liu, C.: Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal. Bioanal. Chem. 391(2), 679–685 (2008)

    Article  Google Scholar 

  41. Thambirajah, J.J., Zulkali, M.D., Hashim, M.A.: Microbiological biochemical changes during the composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate. Bioresour. Technol. 52, 133–144 (1995)

    Article  Google Scholar 

  42. Tomati, U., Galli, L., Pasetti, E., Volterra, E.: Bioremediation of olive-mill wastewaters by composting. Waste Manage. Res. 13, 509–518 (1995)

    Google Scholar 

  43. Yager, R.R., Filev, D.P.: A simple adaptive defuzzification method. IEEE. Trans. Fuzzy Syst. 1, 69–78 (1993)

    Google Scholar 

  44. Yang, S.T.: Bioprocessing for value-added products from renewable resources. In: Yang, S.T. (ed.). Elsevier, Ohio (2006)

  45. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zucconi F., Monaco A., Forte M.: Phytotoxins during the stabilisation of organic matter. In: Gasser J.K.R. (ed.) Composting of Agricultural and Other Wastes, pp. 73–85. Elsevier Applied Science Publications, London (1985)

Download references

Acknowledgments

Special thanks for the collaboration of the technical support at IRNAS (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M.J., Eugenio, M.E., López, F. et al. Neural Models for Optimizing Lignocellulosic Residues Composting Process. Waste Biomass Valor 3, 319–331 (2012). https://doi.org/10.1007/s12649-012-9121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9121-y

Keywords

Navigation