Skip to main content
Log in

Studies on the Thermal Degradation Behavior of Ionic Liquid Regenerated Cellulose

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present work ionic liquid has been used for the regeneration of cellulose from used writing paper precursor. The ionic liquid regenerated cellulose was characterized by TGA, FTIR and SEM analysis and the regenerated material was found to exhibit more homogeneous microstructure. The activation energy for the thermal degradation of the regenerated cellulose has been found to be less than the precursor (used paper) as determined by Friedman kinetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy, D.J., Power, N.: A technical, economic, and environmental analysis of energy production from newspaper in Ireland. Waste Manag. 27, 177–192 (2007)

    Article  Google Scholar 

  2. Browning, B.L.: The Chemistry of Wood. Robert E. Krieger Publishing Company, Huntington, NY (1975)

    Google Scholar 

  3. Rowell, R.M.: The Chemistry of Solid Wood. Advances in Chemistry. Series No. 207. American Chemical Society, Washington, DC (1984)

    Google Scholar 

  4. Elton, E.F.: Method for alkaline delignification of lignocellulosic fibrous material at a consistency which is raised during reaction. US Patent 4,806,203, 2006

    Google Scholar 

  5. Blanco, W.G.: Cellulose xanthate. Ind. Eng. Chem. 18(12), 1257–1259 (1926)

    Article  Google Scholar 

  6. Ohno, H., Fukaya, Y.: Task specific ionic liquids for cellulose. Chem. Lett. 38, 2–7 (2009)

    Article  Google Scholar 

  7. Plentnev, I.V., Smirnova, S.V., Khachatryan, K.S., Zernov, V.V.: Dissolution of cellulose in ionic liquid as way to obtain test for metal ion detection. J. Russ. Chem. 48, 51–56 (2004)

    Google Scholar 

  8. Li, X.R.: Green solvents: synthesis and application of ionic liquids, pp. 298–300. China Chemical Industry Press, Beijing (2005)

    Google Scholar 

  9. Liu, S., Xie, C., Yu, S., Ji, K., Li, H., Li, L.: Reactions of α-pinene using acidic ionic liquids as catalysts. J. Mol. Catal. A Chem. 279, 177–181 (2008)

    Article  Google Scholar 

  10. Muldoon, J.M., Aki, K.V., Anderson, L.J., Dixon, K.J., Brennecke, F.J.: Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 111, 9001–9009 (2007)

    Article  Google Scholar 

  11. Paun, C., Barklie, J., Goodrich, P., Gunaratne, H.Q.N., McKeown, A., Parvulescu, V.I., Hardacre, C.: Supported and liquid phase task specific ionic liquids for base catalysed Knoevenagel reactions. J. Mol. Catal. A269, 64–69 (2007)

    Article  Google Scholar 

  12. Aldous, L., Silvester, D.S., Pitner, W.R., Compton, R.G., Lagunas, M.C., Hardacre, C.: Voltammetric studies of gold, protons, and [HCl2] in ionic liquids. J. Phys. Chem. C 111, 8496–8502 (2007)

    Article  Google Scholar 

  13. Pinkert, A., Marsh, N.K., Pang, S., Staiger, P.M.: Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009)

    Article  Google Scholar 

  14. El Seoud, A.O., Koschella, A., Fidale, C.L., Dorn, S., Heinze, T.: Applications of ionic liquids in carbohydrates chemistry: a window of opportunities. Biomacromolecules 8, 2629–2646 (2007)

    Article  Google Scholar 

  15. Feng, L., Chen, Z.I.: Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142, 1–5 (2008)

    Article  Google Scholar 

  16. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)

    Article  Google Scholar 

  17. Kohler, S., Heinze, T.: Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14, 489–495 (2007)

    Article  Google Scholar 

  18. Xie, H., Li, S., Zhang, S.: Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem. 7, 606–608 (2005)

    Article  Google Scholar 

  19. Bradford, C.H., Tipper, C.F.H.: Comprehensive Chemical Kinetics. Elsevier, Amsterdam (1980)

    Google Scholar 

  20. Saha, B., Ghoshal, K.A.: Model-fitting methods for evaluation of the kinetics triplet during thermal decomposition of poly(ethylene terephthalate) (PET) soft drink bottles. Chem. Eng. J. 39, 111 (2005)

    Google Scholar 

  21. Li, X., Huang, M., Yang, Y.: Structure and high-resolution thermogravimetry of liquid-crystalline copoly(p-oxybenzoate-ethylene terephthalate-p-benzamide). Polym. Int. 48, 1277 (1999)

    Article  Google Scholar 

  22. Gao, Z., Amasaki, I., Nakada, M.: A thermogravimetric study on thermal degradation of polyethylene. J. Anal. Appl. Pyrolysis 67, 1–9 (2003)

    Article  Google Scholar 

  23. Kissinger, E.H.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  24. Bhuiyan, A.N.M., Murakami, K., Ota, M.: On thermal stability and chemical kinetics of waste newspaper by thermogravimetric and pyrolysis analysis. J. Environ. Eng. 3, 1–12 (2008)

    Article  Google Scholar 

  25. Antal Jr, J.M., Friedman, L.H.: Kinetics of cellulose pyrolysis in nitrogen and steam. Combust. Sci. Technol. 21, 141–152 (1980)

    Article  Google Scholar 

  26. Taubert, A., Steiner, P., Mantion, A.: Ionic liquid crystal precursor for inorganic particles: phase diagram and thermal stability of a CuCl nanoplatelet precursor. J. Phys. Chem. B 109, 15542–15547 (2005)

    Article  Google Scholar 

  27. Taubert, A., Palivan, C., Casse, O., Gozzo, F., Schmitt, B.: Ionic liquid–crystal precursors (ILCPs) for CuCl platelets: the origin of the exothermic peak in the DSC curves. J. Phys. Chem. C 111, 4077–4082 (2007)

    Article  Google Scholar 

  28. Sun, N., Rahman, M., Qin, Y., Maxim, L.M., Rodriguez, H., Rogers, D.R.: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11, 646–655 (2009)

    Article  Google Scholar 

  29. Broido, A., Nelson, A.M.: Char yield on pyrolysis of cellulose. Combust. Flame 24, 263–267 (1975)

    Article  Google Scholar 

  30. Broido, A.: Kinetics of solid-phase cellulose pyrolysis. In: Shafizadeh, F., Sarkanen, K.V., Tillman, D.A. (eds.) Thermal Uses and Properties of Carbohydrates and Lignins. Academic Press, New York (1976)

    Google Scholar 

  31. Volker, S., Rieckmann, T.: Thermokinetic investigation of cellulose pyrolysis—impact of initial and final mass on kinetic results. J. Appl. Polym. Sci. 62, 165–177 (2002)

    Google Scholar 

  32. Lee, S., Jin, B.S.: Thermal degradation kinetics of antimicrobial agent, poly(hexamethylene guanidine) phosphate. Macromol. Res. 14, 491–498 (2006)

    Google Scholar 

  33. Varhegyi, G., Szabo, P., Antal, J.M.: Reaction kinetics of the thermal decomposition of hemicellulose and cellulose in biomass materials. In: Bridgwater, A.V. (ed.) Advances in Thermochemical Biomass Conversion, pp. 760–770. Blackie Academic and Professional, London (1994)

    Google Scholar 

  34. Lin, P.J., Chang, Y.C., Wu, H.C., Shih, M.S.: Thermal degradation kinetics of polybutadiene rubber. Polym. Degrad. Stab. 53, 295 (1996)

    Article  Google Scholar 

  35. Nuopponen, M., Wikberg, H., Vuorinen, T., Maunu, L.S., Ja masa, S., Viitaniemi, P.: Heat-treated softwood exposed to weathering. J. Appl. Polym. Sci. 91, 2128–2134 (2003)

    Article  Google Scholar 

  36. Ursula, K.: Wood Production, Wood Technology, and Biotechnological Impacts. Universitätsverlag Göttingen (2007)

  37. Zhang, H., Wu, J., Zhang, J., He, J.: 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38, 8272–8277 (2005)

    Article  Google Scholar 

  38. Zhou, S.M., Tashiro, K., Hongo, T., Shirataki, H., Yamane, C., Ii, T.: Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 34, 1274–1280 (2001)

    Article  Google Scholar 

  39. Kataoka, Y., Kondo, T.: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31, 760–764 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Ionic Liquid Laboratory, Chemical Engineering Department, Universiti Teknologi PETRONAS, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawshad Muhammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhammad, N., Man, Z., Azmi Bustam Khalil, M. et al. Studies on the Thermal Degradation Behavior of Ionic Liquid Regenerated Cellulose. Waste Biomass Valor 1, 315–321 (2010). https://doi.org/10.1007/s12649-010-9026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9026-6

Keywords

Navigation