Skip to main content
Log in

Structure and Mechanical Properties of Regenerated Cellulose Fibers Wet-Spun from Ionic Liquid/Cosolvent Systems

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cellulose fibers were wet spun from cellulose/ionic liquid (IL)/cosolvent solutions. The cosolvent system was consisting of 1-Ethyl-3-methylimidazolium acetate (EmimAc), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and water with various composition. Rheological properties of the cellulose/EmimAc with cosolvent solutions showed that dissolution rate can be increased by cosolvent addition, and the complex viscosity can be reduced. The solutions were stable over time at room temperature and could be converted to regenerated fibers with good properties via conventional wet spinning process. The increase in crystallinity of the regenerated cellulose fibers obtained from the EmimAc/cosolvent solution was ascribed to the ability of cosolvent to promote interaction between cellulose chains. The crystallinity of the fibers with only EmimAc as solvent is lower than that of the fibers with cosolvent, it seems that in this case the crystallinity dose reflects the difference in tensile properties. Also, a slight increase in tensile strain, by adding cosolvent to the cellulose/IL system under same wet spinning conditions was observed. The increase in the strain may be due to the crystal chain slip and plasticization effect by the cosolvent dispersed in the fiber, resulting in the increase the mobility of cellulose chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Isobe, S. Kimura, M. Wada, and S. Kuga, Carbohdr. Polym., 89, 1298 (2012).

    Article  CAS  Google Scholar 

  2. F. Fushimi, T. Watanabe, T. Hiyoshi, Y. Yamashita, and Y. Osakai, J. Appl. Polym. Sci., 59, 15 (1996).

    Article  CAS  Google Scholar 

  3. H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).

    Article  CAS  Google Scholar 

  4. F. Hermanutz, F. Gähr, E. Uerdingen, F. Meister, and B. Kosan, Macromol. Symp., 262, 23 (2008).

    Article  CAS  Google Scholar 

  5. S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, and G. Wu, Green Chem., 8, 325 (2006).

    Article  CAS  Google Scholar 

  6. N. V. Plechkovaa and K. R. Seddonab, Chem. Soc. Rev., 37, 123 (2008).

    Article  Google Scholar 

  7. G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, H. Kopacka, T. Röder, and H. Sixta, Lenz. Ber., 84, 71 (2005).

    CAS  Google Scholar 

  8. Z. Wan, U. Li, and S. Cui, Biopolymers, 89, 1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. H. Liu, K. L. Sale, B. M. Holmes, B. A. Simmons, and S. Singh, J. Phys. Chem. B, 114, 4293 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. A. Xu, J. Wang, and H. Wang, Green Chem., 12, 268 (2010).

    Article  CAS  Google Scholar 

  11. N. P. Evlampieva, J. Vitz, U. S. Schuber, and E. I. Ryumtsev, Russ. J. Appl. Chem., 82, 666 (2009).

    Article  CAS  Google Scholar 

  12. C. Cuissinat, P. Navard, and T. Heinze, Carbohydr. Polym., 72, 590 (2008).

    Article  CAS  Google Scholar 

  13. S. Dorn, F. Wendler, F. Meister, and T. Heinze, Macromol. Mater. Eng., 293, 907 (2008).

    Article  CAS  Google Scholar 

  14. T. Heinze, S. Dorn, M. Schobitz, T. Liebert, S. Köhler, and F. Meister, Macromol. Symp., 262, 8 (2008).

    Article  CAS  Google Scholar 

  15. B. Kosan, C. Michels, and F. Meister, Cellulose, 15, 59 (2008).

    Article  CAS  Google Scholar 

  16. X. Chen, Y. Zhang, L. Cheng, and H. Wang, J. Polym. Environ., 17, 273 (2009).

    Article  CAS  Google Scholar 

  17. J. R. Collier, J. L. Watson, B. J. Collier, and S. Petrovan, J. Appl. Polym. Sci., 111, 1019 (2009).

    CAS  Google Scholar 

  18. R. J. Sammons, J. R. Collier, T. G. Rials, and S. Petrovan, J. Appl. Polym. Sci., 110, 3202 (2008).

    Google Scholar 

  19. R. J. Sammons, J. R. Collier, T. G. Rials, and S. Petrovan, J. Appl. Polym. Sci., 110, 1175 (2008).

    Article  CAS  Google Scholar 

  20. Q. L. Kuang, J. C. Zhao, Y. H. Niu, H. Zhang, and Z. G. Wang, J. Phys. Chem. B, 112, 10234 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. H. Song, J. Zhang, Y. Niu, and Z. Wang, J. Phys. Chem. B, 114, 6006 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. T. Cai, H. Zhang, Q. Guo, H. Shao, and W. Hu, J. Appl. Polym. Sci., 115, 1047 (2010).

    Article  CAS  Google Scholar 

  23. G. Bentivoglio, T. Röder, M. Fasching, M. Buchberger, H. Schottenberger, and H. Sixta, Lenz. Ber., 86, 154 (2006).

    CAS  Google Scholar 

  24. C. Olsson and G. Westman, J. Appl. Polym. Sci., 127, 4542 (2013).

    Article  CAS  Google Scholar 

  25. G. Jiang, Y. Yuan, B. Wang, X. Yin, K. S. Mukuze, W. Huang, Y. Zhang, and H. Wang, Cellulose, 19, 1075 (2012).

    Article  CAS  Google Scholar 

  26. D. Ingildeev, F. Effenberger, K. Bredereck, and F. Hermanutz, J. Appl. Polym. Sci., 128, 4141 (2013).

    Article  CAS  Google Scholar 

  27. M. Gerickea, J. Schaller, T. Liebert, P. Fardim, F. Meister, and T. Heinze, Carbohydr. Polym., 89, 526 (2012).

    Article  CAS  Google Scholar 

  28. L. Härdelin, J. Thunberg, E. Perzon, G. Westman, P. Walkenström, and P. Gatenholm, J. Appl. Polym. Sci., 125, 1901 (2012).

    Article  CAS  Google Scholar 

  29. C. Olsson, A. Idström, L. Nordstierna, and G. Westman, Carbohydr. Polym., 99, 438 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. B. D. Rabideau and A. E. Ismaila, Phys. Chem. Chem. Phys., 17, 5767 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. D. L. Minnick, R. A. Flores, M. R. DeStefano, and A. M. Scurto, J. Phys. Chem. B, 120, 7906 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. F. Huo, Z. Liu, and W. Wang, J. Phys. Chem. B, 117, 11780 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. R. Rinaldi, Chem. Commun., 47, 511 (2011).

    Article  CAS  Google Scholar 

  34. J. M. Andanson, E. Bordes, J. Devemy, F. Leroux, A. A. H. Padua, and M. F. C. Gomes, Green Chem., 16, 2528 (2014).

    Article  CAS  Google Scholar 

  35. L. Wang, L. Gao, and B. Cheng, Carbohydr. Polym., 110, 292 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. J. H. Hong, M. K. Ku, Y. J. Ahn, H. J. Kim, and H. Kim, Fiber. Polym., 14, 2015 (2014).

    Article  CAS  Google Scholar 

  37. Y. J. Lee, M. K. Kwon, S. J. Lee, S. W. Jeong, H. C. Kim, T. H. Oh, and S. G. Lee, J. Appl. Polym. Sci., 134, 44658 (2017).

    Google Scholar 

  38. R. Parthasarathi, K. Balamurugan, J. Shi, V. Subramanian, B. A. Simmons, and S. Singh, J. Phys. Chem. B, 119, 14339 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. L. Härdelin, J. Thunberg, E. Perzon, G. Westman, P. Walkenstrom, and P. Gatenholm, J. Appl. Polym. Sci., 125, 1901 (2012).

    Article  CAS  Google Scholar 

  40. Y. J. Ahn, D. H. Hu, J. H. Hong, S. H. Lee, H. J. Kim, and H. Kim, Carbohydr. Polym., 89, 340 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. S. Zhang, F. Li, J. Yu, and L. Gu, Fiber. Polym., 10, 34 (2009).

    Article  CAS  Google Scholar 

  42. F. W. Altena and C. A. Smolders, Macromolecules, 15, 1491 (1982).

    Google Scholar 

  43. P. R. Laity, P. M. Glover, and J. N. Hay, Polymer, 43, 5827 (2002).

    Article  CAS  Google Scholar 

  44. A. Östlund, A. Idström, C. Olsson, P. T. Larsson, and L. Nordstierna, Cellulose, 20, 1657 (2013).

    Article  CAS  Google Scholar 

  45. B. Lindman, G. Karlström, and L. Stigsson, J. Mol. Liq., 156, 76 (2010).

    Article  CAS  Google Scholar 

  46. H. J. Wellard, J. Polym. Sci., 13, 471 (1954).

    Article  CAS  Google Scholar 

  47. F. J. Kolpak and J. Blackwell, Macromolecules, 9, 273 (1976).

    Article  CAS  PubMed  Google Scholar 

  48. A. J. Stipanovic and A. Sarko, Macromolecules, 9, 851 (1976).

    Article  CAS  Google Scholar 

  49. C. Woodcock and A. Sarko, Macromolecules, 13, 1183 (1980).

    Article  CAS  Google Scholar 

  50. T. Okano and A. Koyanagi, Biopolymers, 25, 851 (1986).

    Article  CAS  Google Scholar 

  51. H. Nishimura, T. Okano, and A. Sarko, Macromolecules, 24, 759 (1991).

    Article  CAS  Google Scholar 

  52. K. Gessler, N. Krauss, T. Steiner, C. Betzel, A. Sarko, and W. Saenger, J. Am. Chem. Soc., 117, 11397 (1995).

    Article  CAS  Google Scholar 

  53. H. P. Fink, D. Hofmann, and B. Philipp, Cellulose, 2, 51 (1995).

    CAS  Google Scholar 

  54. P. Langan, Y. Nishiyama, and H. Chanzy, J. Am. Chem. Soc., 121, 9940 (1999).

    Article  CAS  Google Scholar 

  55. Y. Nishiyama, H. Chanzy, M. Wada, J. Sugiyama, K. Mazeau, T. Forsyth, C. Riekel, M. Mueller, B. Rasmussen, and P. Langan, Adv. X-ray Anal., 45, 385 (2002).

    CAS  Google Scholar 

  56. E. Gümüskaya, M. Usta, and H. Kirei, Polym. Degrad. Stab., 81, 559 (2003).

    Article  CAS  Google Scholar 

  57. U. J. Kim, S. H. Eom, and M. Wada, Polym. Degrad. Stab., 95, 778 (2010).

    Article  CAS  Google Scholar 

  58. J. Cai, H. Niu, Y. Yan, H. Xiong, and T. Lin, J. Text. I., 1174456, 1 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Hwan Oh or Se Geun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Lee, S.J., Jeong, S.W. et al. Structure and Mechanical Properties of Regenerated Cellulose Fibers Wet-Spun from Ionic Liquid/Cosolvent Systems. Fibers Polym 20, 501–511 (2019). https://doi.org/10.1007/s12221-019-8335-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8335-z

Keywords

Navigation