Skip to main content
Log in

Noncommutative formulation of Schwarzschild black hole and its physical properties

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the effects of noncommutativity on solutions and the thermodynamic properties of a Schwarzschild black hole. Such noncommutativity is presented in the presence of the smeared Gaussian distribution mass and radius densities. We also examine the phase transition of our system by studying local and global stability. Our idea is a generalisation of noncommutative black holes, where we introduce the noncommutativity together with the radius coordinate and the source of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H S Snyder Phys. Rev.71 38 (1947)

  2. A Connes, M R Douglas and A S Schwarz JHEP 02 003 (1998).

    Article  ADS  Google Scholar 

  3. E Witten Nucl. Phys. B268 253 (1986)

  4. N Mansour et al J. Phys. Stud. 23 1103 (2019).

    Article  Google Scholar 

  5. A el Boukili et al Int. J. Geom. Methods Mod. Phys. 19 2250138 (2022).

    Article  Google Scholar 

  6. N Mansour et al Electron. J. Theor. Phys. 14 21 (2018).

    Google Scholar 

  7. N Seiberg et al JHEP 9909 032 (1999).

    Article  ADS  Google Scholar 

  8. Yassine Sekhmani et al Eur. Phys. J. C 82 1087 (2022).

    Article  ADS  Google Scholar 

  9. L Gouba Int. J. Mod. Phys. A31 1630025 (2016)

  10. I Haouam J. Phys. Stud.24 2002 (2020)

  11. S W Hawking Commun. Math. Phys.25 152 (1972)

  12. R M Wald Living Rev. Rel.4 6 (2001)

  13. P Nicolini, A Smailagic and E Spallucci Phys. Lett. B 632 547 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. P Nicolini Int. J. Mod. Phys. A24 1229 (2009)

  15. S Ansoldi, P Nicolini, A Smailagic and E Spallucci Phys. Lett. B 645 261 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. A Övgün et al Mod. Phys. Lett. A 35 2050163 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  17. J A V Campos, M A Anacleto, F A Brito et al Sci. Rep. 12 8516 (2022).

    Article  ADS  Google Scholar 

  18. J A V Campos, M A Anacleto, F A Brito and E Passos Sci. Rep. 12 8516 (2022).

    Article  ADS  Google Scholar 

  19. F Nasseri Gen. Relativ. Gravit.37 2223 (2005)

  20. Rabin Banerjee et al Class. Quantum Grav. 26 085010 (2009).

    Article  ADS  Google Scholar 

  21. W Kim, E J Son and M J Yoon High Energy Phys. 042 0804 (2008).

    Google Scholar 

  22. K Nozari and S H Mehdipour Class. Quantum Grav. 25 175015 (2008).

    Article  ADS  Google Scholar 

  23. R B Mann and P Nicolini Phys. Rev. D84 064014 (2011)

  24. P R Giri Int. J. Mod. Phys. A22 2047 (2007)

  25. C Ding and J Jing J. High Energ. Phys. 10 052 (2011).

    Article  ADS  Google Scholar 

  26. J R Mureika and P Nicolini Phys. Rev. D 84 044020 (2011).

    Article  ADS  Google Scholar 

  27. Y S Myung, Y W Kim and Y J Park High Energy Phys. 0702 012 (2007).

    Article  ADS  Google Scholar 

  28. J M Tejeiro and A Larranage Pramana J. Phys. 78 1 (2012).

    Article  Google Scholar 

  29. M F Mourad and M Abdelgaber Mod. Phys. Lett. A 36 2150029 (2021).

    Article  ADS  Google Scholar 

  30. J Liang and B Liu EPL100 30001 (2012)

  31. M S Ma and R Zhao Eur. Phys. J. C77 629 (2017)

  32. L Jun et alChin. Phys. C38 025101 (2014)

  33. Y G Miao and Z M Xu Eur. Phys. J. C76 217 (2016)

  34. M I Park Phys. Rev. D80 084026 (2009)

  35. K Nozari and S H Mehdipour Class. Quantum Gravity 25 175015 (2008).

    Article  ADS  Google Scholar 

  36. S Kovacik Mod. Phys. Lett. A32 1750130 (2017)

  37. T Toghrai et alInt. J. Geom. Methods Mod. Phys. (to be published)

  38. T Toghrai et al Int. J. Mod. Phys. A 36 2150138 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  39. T Toghrai et al Eur. Phys. J. Plus 136 291 (2021).

    Article  Google Scholar 

  40. H Lekbich et al Eur. Phys. J. Plus 137 1339 (2022).

    Article  Google Scholar 

  41. A Belhaj et al Int. J. Geom. Methods Mod. Phys. 10 1350009 (2013).

    Article  MathSciNet  Google Scholar 

  42. W Israel Phys. Re. J. Arch.164 1776 (1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. EL Boukili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghrai, T., EL Boukili, A., Mansour, N. et al. Noncommutative formulation of Schwarzschild black hole and its physical properties. Indian J Phys 97, 4497–4502 (2023). https://doi.org/10.1007/s12648-023-02753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02753-5

Keywords

Navigation