Skip to main content
Log in

Peristaltic transport of non-Newtonian nanofluid through an asymmetric microchannel with electroosmosis and thermal radiation effects

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the electroosmotic-driven flow of Sutterby nanofluid under the peristaltic mechanism with the influence of a magnetic field. The flow of fluid is taken into the undulating asymmetrical microchannel. Using Debye-Hückel linearization approximation, the fluid velocity and temperature profiles were calculated. The nanofluid flow is considered in the static electric field on the horizontal side and the applied external magnetic field in the transversal direction. The flow pattern also considers thermal radiation and the Joule heating parameter. Governing fluid flow equations such as continuity, momentum and temperature equations are reduced in consideration of the long wavelength and the very tiny Reynolds number approximation. The resulting nonlinear equations are resolved numerically with the help of the built-in NDSolve function made available in the computational mathematical software MATHEMATICA. Graphical illustrations of the fluid velocity profile, temperature and Trapping phenomenon (Streamlines) have been explained in detail. It is found that increasing the values of Hartmann number velocity of the nanofluid diminishes, and the temperature of the fluid enhances. Results from the Sutterby nanofluid model might have a broad range of applications, such as cancer tissue destruction, disease diagnosis, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({\mathbf{u}} = \left( {\overline{u}^{\prime } ,\overline{v}^{\prime } } \right)\) :

Velocity vector \(\left[ {{\text{m}}\;{\text{s}}^{ - 1} } \right]\)

\(\left( {\overline{x}^{\prime } ,\overline{y}^{\prime } } \right)\) :

Cartesian coordinate of a point

\(a_{1} ,a_{2}\) :

Wave amplitudes of the walls \([{\text{m}}]\)

\(c\) :

Speed \(\left[ {{\text{m}}\;{\text{s}}^{ - 1} } \right]\)

\(d_{1} ,d_{2,}\) :

Width of the channel walls \([{\text{m}}]\)

\(h_{1}^{{^{\prime } }} ,h_{2}^{{^{\prime } }}\) :

Geometry of the channel walls

\(\overline{t}^{\prime }\) :

Time \([{\text{s}}]\)

\({\mathbf{S}}\) :

Cauchy stress tensor

\(F\) :

Flow rate

\({\mathbf{B}}\) :

Magnetic field vector

\(T\) :

Temperature of fluid

\({\mathbf{J}}\) :

Electric current density

\({\mathbf{E}}\) :

Electric field vector

\({\mathbf{I}}\) :

Identity tensor

\(p\) :

Pressure

\(n_{0}\) :

Bulk concentration

\(e\) :

Electronic charge

\(k_{{\text{B}}}\) :

Boltzmann constant \([{\text{J}}\;{\text{K}}^{ - 1} ]\)

\(T_{{{\text{av}}}}\) :

Absolute temperature \([{\text{K}}]\)

\(z\) :

Charge balance

\(q_{{\text{r}}}\) :

Radiative heat flux

\(k\) :

Thermal conductivity \(\left[ {{\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

\(c_{p}\) :

Specific heat \(\left[ {{\text{J}}\;{\text{Kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

\(k^{ * }\) :

Mean absorption coefficient \([{\text{m}}^{2} \;{\text{kg}}^{ - 1} ]\)

\(T_{1}\) :

Temperature at the upper wall \([{\text{K}}]\)

\(T_{0}\) :

Temperature at the lower wall \([{\text{K}}]\)

\({\text{Re}}\) :

Reynolds number of the base fluid

\(\overline{{\text{Re}}}\) :

Reynolds number of the nanofluid

\({\text{Nr}}\) :

Radiation parameter of the base fluid

\(\overline{{{\text{Nr}}}}\) :

Radiation parameter of the nanofluid

\(H\) :

Hartmann number of the base fluid

\(\overline{H}\) :

Hartmann number of the nanofluid

\({\text{Ec}}\) :

Eckert number of the base fluid

\(\overline{{{\text{Ec}}}}\) :

Eckert number of the nanofluid

\(\Pr\) :

Prandtl number of the base fluid

\(\overline{\Pr }\) :

Prandtl number of the nanofluid

\(S_{{\text{p}}}\) :

Joule heating parameter of the base fluid

\(\overline{{S_{{\text{p}}} }}\) :

Joule heating parameter of the nanofluid

\(U_{{{\text{HS}}}}\) :

Helmholtz-Smoluchowski velocity \([ms^{ - 1} ]\)

\(\overline{\varphi }^{\prime }\) :

Phase difference

\(\lambda\) :

Wavelength \([{\text{m}}]\)

\(\mu\) :

Dynamic viscosity \(\left[ {{\text{Kg}}\;{\text{m}}^{ - 1} \;{\text{s}}^{ - 1} } \right]\)

\(\rho\) :

Density \([{\text{Kg}}\;{\text{m}}^{ - 3} ]\)

\(\overline{\xi }\) :

Zeta potential \([{\text{V}}]\)

\(\sigma^{ * }\) :

Stefan–Boltzmann constant \(\left[ {{\text{W}}\;{\text{m}}^{ - 2} \;{\text{K}}^{ - 4} } \right]\)

\(\overline{\varpi }^{\prime }\) :

The solid fractional volume of nanofluid

\(\varepsilon\) :

Dielectric constant \(\left[ {{\text{F}}\;{\text{m}}^{ - 1} } \right]\)

\(\varepsilon_{0}\) :

Permittivity of vacuum \(\left[ {8.854 \times 10^{ - 12} {\text{F}}\;{\text{m}}^{ - 1} } \right]\)

\(\overline{\phi }^{\prime }\) :

Electrical potential \([{\text{V}}]\)

\(\overline{s}^{\prime }\) :

Extra stress tensor

\(\delta\) :

Wave number

\(\Phi\) :

Viscous dissipation factor

\(\sigma\) :

Electrical conductivity \([{\text{S}}\;{\text{m}}^{1} ]\)

\(k_{1}\) :

Debye-Hückel parameter

\(\beta\) :

Mobility of the medium

\(\psi\) :

Stream function \(\left[ {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right]\)

\({\text{nf}}\) :

Properties of nanofluid

\({\text{f}}\) :

Properties of base fluid

\({\text{np}}\) :

Properties of nanoparticles

References

  1. S U S Choi ASME J. Heat Transf. 66 99 (1995)

    Google Scholar 

  2. J Buongimo J. Heat Transf. 128 240 (2006)

    Article  Google Scholar 

  3. A V Kuznetsov and D A Nield Int. J. Heat Mass Transf. 65 682 (2013)

    Article  Google Scholar 

  4. S I Abdelsalam and M M Bhatti RSC Adv. 8 7904 (2018)

    Article  ADS  Google Scholar 

  5. M Hatami et al. J. Anal. 27 913 (2019)

    Article  MathSciNet  Google Scholar 

  6. P Tamizharasi et al. Partial Diff. Equ. Appl. Math. 4 100087 (2021)

    Google Scholar 

  7. R Raza et al. Numer. Methods Partial Differ. Equ. 39 975 (2023)

    Article  Google Scholar 

  8. A Magesh and M Kothandapani J. Mech. Med. Biol. 22 2150068 (2022)

    Article  Google Scholar 

  9. M M Bhatti, S M Sait and R Ellahi Pharmaceuticals 15 1352 (2022)

    Article  Google Scholar 

  10. M M Bhatti and H F Öztop et al. Materials 15 7507 (2022)

    Article  ADS  Google Scholar 

  11. T Thumma, S R Mishra and M A Abbas et al.  Appl. Math. Comput. 421 126927 (2022)

    Google Scholar 

  12. R Vijayaragavan et al. J. Porous Media 25 65 (2022)

    Article  Google Scholar 

  13. A Magesh, P Tamizharasi and R Vijayaragavan Heat Transf. 51 6563 (2022)

    Article  Google Scholar 

  14. T W Latham Fluid motions in a peristaltic pump Master's Thesis. Massachusetts Institute of Technology, Cambridge (1966)

  15. A H Shapiro  et al. J. Fluid Mech. 37 799 (1969)

    Article  ADS  Google Scholar 

  16. N Ali and T Hayat Appl. Math. Comput. 193 535 (2007)

    MathSciNet  Google Scholar 

  17. N S Akbar, S Nadeem, T Hayat and A A Hendi Meccanica 47 1283 (2012)

    Article  MathSciNet  Google Scholar 

  18. M M Bhatti and A Zeeshan et al. J. Phys. 92 423 (2018)

    Article  ADS  Google Scholar 

  19. T Salahuddin, M H U Khan, M Khan, S O Alharbi and Y M Chu Phys. Scr. 96 025205 (2020)

    Article  ADS  Google Scholar 

  20. V Sridhar, K Ramesh, M Gnaneswara Reddy, M N Azese and S I Abdelsalam Waves Ran. Comp. Media 1 (2022)

  21. J Akram et al. J. Comput. Sci. 62 101696 (2022)

    Article  Google Scholar 

  22. V K Narla et al. J. Ambient Energy 2 1 (2022)

    Google Scholar 

  23. R Choudhari, K Ramesh, D Tripathi, H Vaidya and K V Prasad Heat Transf. 51 6507 (2022)

    Article  Google Scholar 

  24. N T M El-Dabe and D R Mostapha Indian J. Phys. 96 2841 (2022)

    Article  ADS  Google Scholar 

  25. S Noreen et al. Therm. Sci. Eng. Prog. 11 254 (2019)

    Article  Google Scholar 

  26. K Ramesh and D Tripathi  et al. J. Mol. Liq. 314 113568 (2020)

    Article  Google Scholar 

  27. R Jhorar and D Tripathi Indian. J. Phys. 92 1229 (2018)

    Article  ADS  Google Scholar 

  28. S Noreen and S Waheed et al. Int Commun. Heat Mass Transf. 123 105180 (2021)

    Article  Google Scholar 

  29. A M Alsharif and A I Abdellateef et al. Math. Mech. Engl. Ed. 43 931 (2022)

    Article  Google Scholar 

  30. A Abbasi and A Zaman et al. J. Phys. 96 825 (2022)

    Article  ADS  Google Scholar 

  31. A Magesh et al. J. Phys. Conf. Ser. 1850 012102 (2021)

    Article  Google Scholar 

  32. T Hayat, H Zahir, M Mustafa and A Alsaedi Results Phys. 6 805 (2016)

    Article  ADS  Google Scholar 

  33. T Hayat, S Ayub, A Alsaedi, A Tanveer and B Tanveer Results Phys. 7 762 (2017)

    Article  ADS  Google Scholar 

  34. C Dhanapal and J Kamalakkannan et al. Appl.Bionics. Biomech. 2016 4123741 (2016)

    Article  Google Scholar 

  35. B Mallick and J C Misra Eng. Sci. Technol. Int. J. 22 266 (2019)

    Google Scholar 

  36. A Magesh and M Kothandapani Eur. Phys. J. Spec. Top. 230 1447 (2021)

    Article  Google Scholar 

  37. M Mishra, and A R Rao  Z Angew Math. Phys. 54 532 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Magesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalakkannan, J., Dhanapal, C., Kothandapani, M. et al. Peristaltic transport of non-Newtonian nanofluid through an asymmetric microchannel with electroosmosis and thermal radiation effects. Indian J Phys 97, 2735–2744 (2023). https://doi.org/10.1007/s12648-023-02636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02636-9

Keywords

Navigation