Skip to main content
Log in

Electro-osmosis modulated peristaltic flow of oldroyd 4-constant fluid in a non-uniform channel

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, we investigate the physical mechanism of the electro-osmosis fluid flow within a non-uniform channel. Fluid model is characterized by the constitutive relation of the Oldroyd 4-constant fluid. We retrieved the Poisson equations by utilizing the mass and momentum conservation models in order to obtain the mathematical formulation of the given problem. The methodology used in obtaining the solution is classified into three different steps. Firstly, we linearized the given differential equations to ascertain the potential Debye–Huckel function. Secondly, we implemented the widely-used assumptions like low Reynolds number and long wavelength to reduce the momentum (partial differential) equations into a system of ordinary differential equations. Thirdly, we solved the simplified differential equations numerically by using the shooting method. Subsequently, we have calculated the graphical results to evaluate the influence of various emerging parameters such as the electroosmotic parameter, viscoelastic fluid parameters and non-uniform parameter on the fluid flow within a non-uniform channel. We have also computed several features of peristaltic pumping for the case of Helmholtz-Smoluchowski velocity. Our results reveal that the behavior of velocity magnitude shows an increasing trend by enhancing the values of the electroosmotic parameter, whereas it also manifests a decreasing trend if the value of the non-uniform parameter is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. F. F. Reuss Soc. Imp. Natur. Moscow. 2 327 (1809)

    Google Scholar 

  2. R. Sadr, M. Yoda, Z. Zheng and A. T. Conlisk J. Fluid Mech. 506 357 (2004)

    Article  ADS  Google Scholar 

  3. A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, T. W. Kenny and M. G. Garguilo J. Anal. Chem. 72 5 1053 (2000)

    Article  Google Scholar 

  4. X. W. Yao, D. Wu and F. E. Regnier J. Chromatogr. A 636 1 21 (1993)

    Article  Google Scholar 

  5. S. Chakraborty J. Phys. D Appl. Phys. 39 24 5356 (2006)

    Article  ADS  Google Scholar 

  6. D. Tripathi, S. Bhushan and O. A. Bég J MECH MED BIOL. 17 03 1750052 (2017)

    Article  Google Scholar 

  7. D. Tripathi, A. Yadav and O. A. Bég Eur. Phys. J. Plus. 132 4 173 (2017)

    Article  Google Scholar 

  8. A. Bandopadhyay, D. Tripathi and S. Chakraborty Phy. Fluids. 28 5 052002 (2016)

    Article  ADS  Google Scholar 

  9. A. Yadav, S. Bhushan and D. Tripathi MATEC Web of Conferences 192 02043 (2018).

    Article  Google Scholar 

  10. V. K. Narla, D. Tripathi and G. R. Sekhar J. Eng. Math 114 1 177 (2019)

    Article  Google Scholar 

  11. R. Jhorar, D. Tripathi, M. M. Bhatti and R. Ellahi INDIAN J. PHYS 92 10 1229 (2018)

    Article  ADS  Google Scholar 

  12. P. Goswami, J. Chakraborty, A. Bandopadhyay and S. Chakraborty MICROVASC RES. 103 41 (2016)

    Article  Google Scholar 

  13. A. M. Afonso, M. A. Alves and F. T. Pinho J. Eng. Math. 71 1 15 (2011)

    Article  Google Scholar 

  14. X. Guo and H. Qi Micromachines. 8 12 341 (2017)

    Article  Google Scholar 

  15. D. Tripathi, R. Jhorar, O. A. Bég and A. Kadir J. Mol. Liq. 236 358 (2017)

    Article  Google Scholar 

  16. A. R. Estabragh, M. Naseh and A. A. Javadi Appl. Clay Sci. 95 32 (2014)

    Article  Google Scholar 

  17. S. Chen, X. He, V. Bertola and M. Wang J. Colloid Interface Sci. 436 186 (2014)

    Article  ADS  Google Scholar 

  18. D. Tripathi, S. Bhushan and O. A. Beg J. Porous Media 23 5 477 (2020)

    Article  Google Scholar 

  19. M. K. Chaube, A. Yadav, D. Tripathi and O. A. Beg KOREA-AUST RHEOL J. 30 2 89 (2018)

    Article  Google Scholar 

  20. J. Akram, N. S. Akbar and D. Tripathi Microvasc. Res. 132 104062 (2020)

    Article  Google Scholar 

  21. K. Ramesh, D. Tripathi, M. M. Bhatti and C. M. Khalique J. Mol. Liq 314 113568 (2020)

    Article  Google Scholar 

  22. J Prakash, D Tripathi, OA Bég. Appl. Nanosci 1 (2020)

  23. D. Tripathi, J. Prakash, A. K. Tiwari and R. Ellahi Microvasc. Res. 132 104065 (2020)

    Article  Google Scholar 

  24. D. Tripathi, V. K. Narla and Y. Aboelkassem Phys. Fluids 32 8 082004 (2020)

    Article  ADS  Google Scholar 

  25. V. K. Narla, D. Tripathi and O. A. Bég Chin. J. Phys. 67 544 (2020)

    Article  Google Scholar 

  26. V. K. Narla, D. Tripathi and O. A. Bég Therm. Sci. Eng. Prog. 15 100424 (2020)

    Article  Google Scholar 

  27. O. Eytan, A. J. Jaffa and D. Elad MED ENG PHYS. 23 7 475 (2001)

    Article  Google Scholar 

  28. M. Kothandapani, V. Pushparaj and J. Prakash JKSUES. 30 1 86 (2018)

    Google Scholar 

  29. J Akram, NS Akbar, D Tripathi. Appl. Nanosci. .1 (2020)

  30. J. Prakash, K. Ramesh, D. Tripathi and R. Kumar Microvasc. Res. 118 162 (2018)

    Article  Google Scholar 

  31. A. Abbasi W Farooq Arab. (Eng: J. Sci) (2020)

    Google Scholar 

  32. T. Hayat, R. Iqbal, A. Tanveer and A. Alsaedi J. Magn. Magn. Mater. 408 168 (2016)

    Article  ADS  Google Scholar 

  33. J. Prakash and D. Tripathi J. Mol. Liq. 256 352 (2018)

    Article  Google Scholar 

  34. M. Kothandapani and J. Prakash IEEE Trans Nanobioscience. 14 4 385 (2014)

    Article  Google Scholar 

  35. N. Ali, Y. Wang, T. Hayat and M. Oberlack J. Biorheol. 45 5 611 (2008)

    Article  Google Scholar 

  36. A. Abbasi, W. Farooq, N. Ali and I. Ahmad J. Nanofluids. 8 4 736 (2019)

    Article  Google Scholar 

  37. K. V. Reddy, O. D. Makinde and M. G. Reddy INDIAN J PHYS 92 11 1439 (2018)

    Article  ADS  Google Scholar 

  38. G. M. Moatimid, M. A. Mohamed and M. A. Hassan E.M El-Dakdoky Pramana 92 6 90 (2019)

    Article  ADS  Google Scholar 

  39. N. Ali, S. Hussain, K. Ullah and O. A. Bég Eur. Phys. 134 4 141 (2019)

    Google Scholar 

  40. F. Mabood and K. Das Eur. Phys. 131 1 1 (2016)

    Google Scholar 

  41. H. Berrehal, F. Mabood and O. D. Makinde Eur. Phys. 135 7 1 (2020)

    Google Scholar 

  42. J. Prakash, E. P. Siva and N. Balaji M kothandapani J Phys 100 1 012165 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Zaman, A., Farooq, W. et al. Electro-osmosis modulated peristaltic flow of oldroyd 4-constant fluid in a non-uniform channel. Indian J Phys 96, 825–837 (2022). https://doi.org/10.1007/s12648-020-02002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-02002-z

Keywords

Navigation