Skip to main content
Log in

Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kang, S.C. Tan, C. Yang, X. Huang, Sens. Actuators A: Phys. 133, 375 (2007)

    Article  Google Scholar 

  2. L. Jiang, J.C. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, K.E. Goodson, IEEE Trans. Compon. Packag., Manufact. Technol. 25, 347 (2002)

    Article  Google Scholar 

  3. Y.K. Suh, S. Kang, Electroosmotic Pump, in Encyclopedia of Microfluidics and Nanofluidics, edited by D. Li (Springer, US, 2014) pp. 1--13

  4. S. Zeng, C.-H. Chen, J.C. Mikkelsen, J.G. Santiago, Sens. Actuators B 79, 107 (2001)

    Article  Google Scholar 

  5. C.C. Huang, M.Z. Bazant, T. Thorsen, Lab Chip 10, 80 (2010)

    Article  Google Scholar 

  6. S. Liu, Q. Pu, J.J. Lu, J. Chromatogr. A 1013, 57 (2003)

    Article  Google Scholar 

  7. D. Rinderknecht, M.A. Gharib, Acta Futura 6, 9 (2013)

    Google Scholar 

  8. M.A. Benjaminson, S. Lehrer, D.A. Macklin, Acta Astron. 43, 329 (1998)

    Article  Google Scholar 

  9. V.K. Stokes, Theory of Fluids with Microstructure - An Introduction (Springer-Verlag, New York, 1984)

  10. J. Lin, Comput. Struct. 79, 801 (2001)

    Article  Google Scholar 

  11. M. Nabhani, M. El Khilfi, B. Bou-Said, Tribology Int. 54, 116 (2013)

    Article  Google Scholar 

  12. D. Tripathi, Transp. Porous Media 92, 559 (2012)

    Article  MathSciNet  Google Scholar 

  13. D. Pal, N. Rudraiah, R. Devanathan, Bull. Math. Biol. 50, 329 (1988)

    Article  Google Scholar 

  14. D. Tripathi, O. Anwar Bég, J. Mech. Med. Biol. 12, 1250088 (2012)

    Article  Google Scholar 

  15. Y.C. Fung, C.S. Yih, ASME J. Appl. Mech. 35, 669 (1968)

    Article  ADS  Google Scholar 

  16. M.Y. Jaffrin, A.H. Shapiro, Annu. Rev. Fluid Mech. 3, 13 (1971)

    Article  ADS  Google Scholar 

  17. T.D. Brown, T.K. Hung, J. Fluid Mech. 83, 249 (1977)

    Article  ADS  Google Scholar 

  18. Y. Bar-cohen, Z. Chatig, Piezoelectrically-actuated miniature peristaltic pump, Caltech-Jet Propulsion Laboratory, Technical Report, Pasadena, California, USA (1991)

  19. V. Shkolnikov, J. Ramunas, J.G. Santiago, Sens. Actuators A: Phys. 160, 141 (2010)

    Article  Google Scholar 

  20. E.F. Elsehawey, K.S. Mekheimer, J. Phys. D: Appl. Phys. 27, 1163 (1994)

    Article  ADS  Google Scholar 

  21. K.S. Mekheimer, Y. Abdelmaboud, Phys. A: Stat. Mech. Appl. 387, 2403 (2008)

    Article  Google Scholar 

  22. V.P. Rathod, N.G. Sridhar, M. Mahadev, Adv. Appl. Sci. Res. 3, 2326 (2012)

    Google Scholar 

  23. K. Ramesh, M. Devakar, J. Fluids 2015, 163832 (2015)

    Article  Google Scholar 

  24. Y. Abdelmaboud, K.S. Mekheimer, A.I. Abdellateef, ASME J. Heat Transf. 135, 044502 (2013)

    Article  Google Scholar 

  25. D. Tripathi, O. Anwar Bég, Math. Biosci. 246, 72 (2013)

    Article  MathSciNet  Google Scholar 

  26. S.-X. Li et al., Colloids Surf. A 470, 240 (2015)

    Article  Google Scholar 

  27. A.A. Siddiqui, A. Lakhtakia, Proc. R. Soc. London A 465, 501 (2009)

    Article  ADS  Google Scholar 

  28. A.M. Afonso, M.A. Alves, F.T. Pinho, J. Eng. Math. 71, 15 (2011)

    Article  Google Scholar 

  29. J.J. Sousa, F.T. Pinho, M.A. Alves, Microfluidics Nanofluidics 10, 107 (2011)

    Article  Google Scholar 

  30. G.H. Tang, X.F. Li, Y.L. He, W.Q. Tao, J. Non-Newtonian Fluid Mech. 157, 133 (2009)

    Article  Google Scholar 

  31. G.H. Tang, P.X. Ye, W.Q. Tao, J. Non-Newtonian Fluid Mech. 165, 1536 (2010)

    Article  Google Scholar 

  32. X.X. Li, Z. Yin, Y.J. Jian, L. Chang, J. Su, A.S. Liu, J. Non-Newtonian Fluid Mech. 188, 43 (2012)

    Article  Google Scholar 

  33. M. Rezaei, A.R. Azimian, D. Toghraie, Phys. A: Stat. Mech. Appl. 426, 25 (2015)

    Article  Google Scholar 

  34. G.C. Shit, A. Mondal, A. Sinha, P.K. Kundu, Phys. A: Stat. Mech. Appl. 449, 437 (2016)

    Article  Google Scholar 

  35. G.C. Shit, A. Mondal, A. Sinha, P.K. Kundu, Phys. A: Stat. Mech. Appl. 462, 1040 (2016)

    Article  Google Scholar 

  36. M.F. El-Sayed, M.H. Haroun, D.R. Mostapha, J. Appl. Mech. Tech. Phys. 55, 565 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Goswami, J. Chakraborty, A. Bandopadhyay, S. Chakraborty, Microvascular Res. 103, 41 (2015)

    Article  Google Scholar 

  38. S. Chakraborty, J. Phys. D: Appl. Phys. 39, 5356 (2006)

    Article  ADS  Google Scholar 

  39. D. Tripathi, S. Bhushan, O. Anwar Bég, Colloids Surf. A 506, 32 (2016)

    Article  Google Scholar 

  40. N. Rudraiah, B.M. Shankar, C.O. Ng, Spec. Top. Rev. Porous Media 2, 11 (2011)

    Article  Google Scholar 

  41. B.M. Shankar, J. Kumar, I.S. Shivakumara, Appl. Math. Modell. 40, 5462 (2016)

    Article  Google Scholar 

  42. N. Rudraiah, K.S. Mallika, N. Sujatha, J. Appl. Fluid Mech. 9, 71 (2016)

    Article  Google Scholar 

  43. N.S. Akbar, M. Raza, R. Ellahi, Eur. Phys. J. Plus 129, 155 (2014)

    Article  Google Scholar 

  44. N.S. Akbar, S.U. Rahman, R. Ellahi, S. Nadeem, Eur. Phys. J. Plus 129, 256 (2014)

    Article  Google Scholar 

  45. A. Zeeshan, R. Ellahi, M. Hassan, Eur. Phys. J. Plus 129, 261 (2014)

    Article  Google Scholar 

  46. N.S. Akbar, M. Raza, R. Ellahi, Eur. Phys. J. Plus 129, 185 (2014)

    Article  Google Scholar 

  47. R. Ellahi, M.M. Bhatti, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 26, 1802 (2016)

    Article  Google Scholar 

  48. A.C. Eringen, Microcontinuum Field Theories: II Fluent Media (Springer, New York, 2001)

  49. N.B. Naduvinamani, A. Siddangouda, Proc. IMechE Part J: J. Eng. Tribol. 221, 525 (2007)

    Article  Google Scholar 

  50. S.C. Cowin, Adv. Appl. Mech. 14, 279 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Yadav, A. & Anwar Bég, O. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur. Phys. J. Plus 132, 173 (2017). https://doi.org/10.1140/epjp/i2017-11416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11416-x

Navigation