Skip to main content
Log in

Three-layered star comprising polytropic, quark and gaseous matter

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We construct a new exact model for a dense stellar object utilising the Einstein–Maxwell system of equations. The model comprises three interior regions with distinct equations of state (EoS): the polytropic EoS at the core region, linear EoS at the intermediate region and Chaplygin EoS at the envelope region. Our model can regain earlier solutions. A physical analysis reveals that the matter variables, metric functions and other physical conditions are well behaved and consistent in the study of dense stellar objects. Matching of the boundary layers is done with help of the Reissner–Nordstrom exterior space–time. An interesting feature is that the innermost region is outfitted with a polytropic EoS, and this study extends a core–envelope model developed by Mardan, Noureen and Khalid into a three-layered model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M C Durgapal and R Bannerji, Astrophys. Space Sci. 84, 409 (1982)

    Article  ADS  Google Scholar 

  2. N Itoh, Prog. Theor. Phys. 1, 44 (1970)

    Google Scholar 

  3. N Pant, S Gedela, R P Pant, J Upreti and R K Bishi, Eur. Phys. J. Plus 135, 180 (2020)

    Article  Google Scholar 

  4. M K Jasim, D Deb, S Ray, Y K Gupta and S R Chowdhury, Eur. Phys. J. C 78, 603 (2018)

    Article  ADS  Google Scholar 

  5. S A Mardan, I Noureen and A Khalid, Eur. Phys. J. C81, 912 (2021)

    Article  ADS  Google Scholar 

  6. A Das, F Rahaman, B K Guha and S Ray, Eur. Phys. J. C 76, 654 (2016)

    Article  ADS  Google Scholar 

  7. L Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  8. F Rahaman, S Ray, A K Jafry and N Chakraborty, Phys. Rev. D 82, 104055 (2010)

    Article  ADS  Google Scholar 

  9. M S Bhatia, S Bonazzola and G Szamosi, Astron. Astrophys. 3, 206 (1969)

    ADS  Google Scholar 

  10. W B Bonnor, Z. Phys. 160, 59 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  11. R Sharma and S D Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    Article  ADS  Google Scholar 

  12. J K Rao, M Annapurna and M M Trivedi, Pramana – J. Phys. 54, 215 (2000)

    Article  ADS  Google Scholar 

  13. J W Jape, S D Maharaj, J M Sunzu and J M Mkenyeleye, Eur. Phys. J. C 81, 1057 (2021)

    Article  ADS  Google Scholar 

  14. R Sharma and S Mukherjee, Mod. Phys. Lett. A 17, 38 (2002)

    Google Scholar 

  15. A S Lighuda, S D Maharaj, J M Sunzu and E W Mureithi, Astrophys. Space Sci. 366, 76 (2021)

    Article  ADS  Google Scholar 

  16. S Ray, M Malheiro, J P S Lemos and V T Zanchin, Braz. J. Phys. 34, 310 (2004)

    Article  ADS  Google Scholar 

  17. J M Sunzu and P Danford, Pramana – J. Phys. 89, 44 (2017)

    Article  ADS  Google Scholar 

  18. A K Mathias, S D Maharaj, J M Sunzu and J M Mkenyeleye, Pramana – J. Phys. 95, 178 (2021)

    Article  ADS  Google Scholar 

  19. S Thirukkanesh and S D Maharaj, Class. Quantum Grav. 25, 235001 (2008)

    Article  ADS  Google Scholar 

  20. S Thirukkanesh and S D Maharaj, Math. Meth. Appl. Sci. 32, 684 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. S D Maharaj, J M Sunzu and S Ray, Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  22. J M Sunzu, S D Maharaj and S Ray, Astrophys. Space Sci. 351, 634 (2014)

    Google Scholar 

  23. J M Sunzu, S D Maharaj and S Ray, Astrophys. Space Sci. 352, 729 (2014)

    Article  ADS  Google Scholar 

  24. V Varela, F Rahaman, S Ray, K Chakraborty and M Kalam, Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  25. M Chaisi and S D Maharaj, Gen. Relativ. Gravit. 37, 1177 (2005)

    Article  ADS  Google Scholar 

  26. M Chaisi and S D Maharaj, Pramana – J. Phys. 66, 609 (2006)

    Article  ADS  Google Scholar 

  27. S D Maharaj and P Mafa Takisa, Gen. Relativ. Gravit. 45, 1951 (2013)

    Article  ADS  Google Scholar 

  28. R C Freitas and S V B Goncalves, Eur. Phys. J. C 74, 3217 (2014

    Article  ADS  Google Scholar 

  29. J M Sunzu, Global J. Sci. Frontier Res. 18, 1 (2018)

    Google Scholar 

  30. R F Tooper, Astrophys. J. 140, 434 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  31. P H Chavanis, IOP Conference series J. Phys. 1030, 289 (2018)

    Google Scholar 

  32. V Gorini and U Moschella, Phys. Rev. D 78, 064064 (2008)

    Article  ADS  Google Scholar 

  33. K P Singh and R R Baruah, Int. J. Astron. Astrophys. 6, 105 (2016)

    Article  Google Scholar 

  34. P Bhar, Astrophys. Space Sci. 359, 41 (2015)

    Article  ADS  Google Scholar 

  35. P Bhar, Astrophys. Space Sci. 390, 27 (2017)

    Google Scholar 

  36. P Bhar, M Govender and R Sharma, Pramana – J. Phys. 90, 5 (2018)

    Article  ADS  Google Scholar 

  37. P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 361, 262 (2016)

    Article  ADS  Google Scholar 

  38. P Mafa Takisa, S D Maharaj and C Mulangu, Pramana – J. Phys. 92, 40 (2019)

    Google Scholar 

  39. V O Thomas, B S Ratanpal and P C Vinodkumar, Int. J. Mod. Phys. D 14, 1 (2005)

    Article  Google Scholar 

  40. B C Paul and R Tikekar, Int. J. Mod. Phys. D32, 2455 (2005)

    Google Scholar 

  41. T S Metcalfe, M H Montgomery and S D Kawaler, Mon. Not. R. Astron. Soc. 344, L88 (2003)

    Article  ADS  Google Scholar 

  42. R P Pant, S Gedela, R K Bisht and N Pant, Eur. Phys. J. C 79, 602 (2019)

    Article  ADS  Google Scholar 

  43. S Gedela, N Pant, J Upreti and R P Pant, Eur. Phys. J. C 79, 566 (2019)

    Article  ADS  Google Scholar 

  44. S Hansraj, S D Maharaj and S Mlaba, Eur. Phys. J. Plus 131, 4 (2016)

    Article  Google Scholar 

  45. M H Montgomery, T S Metcalfe and D E Winget, Mon. Not. R. Astron. Soc. 344, 657 (2003)

    Article  ADS  Google Scholar 

  46. R Tikekar and K Jotania, Gravit. Cosmol. 15, 2 (2009)

    Article  Google Scholar 

  47. T Ramesh and V O P Thomas, Ind. Astrophys. Math. Sci. 64, 5 (2005)

    Google Scholar 

  48. R K Bisht, S Gedela, N Pant and N Tewari, Res. Astron. Astrophys. 21, 162 (2021)

    Article  ADS  Google Scholar 

  49. A S Lighuda, J M Sunzu, S D Maharaj and E W Mureithi, Res. Astron. Astrophys. 21, 310 (2021)

    Article  ADS  Google Scholar 

  50. M C Durgapal and R Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  51. S D Maharaj and K Matondo, New Astron. 97, 101852 (2022)

    Article  Google Scholar 

  52. B V Ivanov, Int. J. Theor. Phys. 49, 1236 (2010)

    Article  Google Scholar 

  53. B V Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. D E Baraco and V H Hamity, Phys. Rev. D 65, 124028(2002)

  55. S K Maurya and F T Ortiz, Eur. Phys. J. C 79, 85 (2019)

  56. M K Jasim, S K Maurya, S Ray, D Shee, D Deb and F Rahaman, Results Phys. 20, 103648 (2020)

  57. S Thirukkanesh and F C Ragel, Astrophys. Space Sci. 81, 1 (2014)

  58. S Ngubelanga, S D Maharaj and S Ray, Astrophys. Space Sci. 357, 74 (2015)

    Article  ADS  Google Scholar 

  59. M H Murad, Astrophys. Space Sci. 361, 20 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  60. S D Maharaj and P Mafa Takisa, Gen. Relativ. Gravit. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  61. S K Maurya, A Bannerjee and S Hansraj, Phys. Rev. D 97, 044022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. P C Fulara and A Sah, Int. J. Astron. Astrophys. 8, 46 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

ASL and EWM acknowledge the University of Dar es Salaam for continuous support and for providing good environment in conducting research. SDM acknowledges that this research is supported by the South Africa Research Chair Initiative of the Department of Science and Technology and the National Research Foundation. JMS acknowledges the University of Dodoma for making a conducive environment for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefta M Sunzu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lighuda, A.S., Maharaj, S.D., Sunzu, J.M. et al. Three-layered star comprising polytropic, quark and gaseous matter. Pramana - J Phys 97, 5 (2023). https://doi.org/10.1007/s12043-022-02475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02475-z

Keywords

PACS Nos

Navigation