Skip to main content
Log in

Quantum radiation of Kerr black hole in de Sitter background

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the tunneling of vector boson particles across the event horizon of Kerr–de Sitter black hole by using Hamilton–Jacobi ansatz to Proca equation and WKB approximation . The surface gravity of KdS black hole has been recovered by using direct calculation and Proca equation. These two different methods give the same Hawking temperature at the event horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S W Hawking Nature 248 30 (1974)

    ADS  Google Scholar 

  2. S W Hawking Commun. Math. Phys. 43 199 (1975)

    ADS  Google Scholar 

  3. J D Bekenstein Phys. Rev. D 7 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  4. J D Bekenstein Phys. Rev. D 9 3292 (1974)

    ADS  Google Scholar 

  5. J M Bardeen, B Carter and S W Hawking Commun. Math. Phys. 31 161 (1973)

    ADS  Google Scholar 

  6. T Damour and R Ruffini Phys. Rev. D 14 332 (1976)

    ADS  Google Scholar 

  7. S Sannan Gen. Rel. Grav. 20 239 (1988)

    ADS  MathSciNet  Google Scholar 

  8. P Kraus and F Wilczek Nucl. Phys. B 433 403 (1995)

    ADS  Google Scholar 

  9. P Kraus and F Wilczek Nucl. Phys. B 437 231 (1995)

    ADS  Google Scholar 

  10. M K Parikh and F Wilczek Phys. Rev. Lett. 85 5042 (2000)

    ADS  MathSciNet  Google Scholar 

  11. B Chatterjee, A Ghosh and P Mitra Phys. Lett. B 661 307 (2008)

    ADS  MathSciNet  Google Scholar 

  12. M Angheben, M Nadalani, L Vanzo and S Zerbini JHEP 05 014 (2005)

    ADS  Google Scholar 

  13. D Chen and S Yang Int. J. Mod. Phys. A 22 5173 (2007)

    ADS  Google Scholar 

  14. G Wang, B Liu and L Wenbiao Gen. Rel. Grav. 42 633 (2010)

    ADS  Google Scholar 

  15. M A Rahman and M L Hossain Phys. Lett. B 712 1 (2012)

    ADS  MathSciNet  Google Scholar 

  16. T Ibungochouba, I Ablu and K Yugindro Int. J. Theor. Phys. 56 2640 (2017)

    Google Scholar 

  17. R Banerjee and B R Majhi JHEP 06 095 (2008)

    ADS  Google Scholar 

  18. R Banerjee and B R Majhi Phys. Lett. B 674 218 (2009)

    ADS  MathSciNet  Google Scholar 

  19. R Banerjee and B R Majhi Phys. Lett. B 675 243 (2009)

    ADS  MathSciNet  Google Scholar 

  20. S Chakraborty and S Saha Adv. High Energy Phys. Article ID 168487 (2014)

  21. B R Majhi Phys. Rev. D 79 044005 (2009)

    ADS  Google Scholar 

  22. A Ghosh, K Noui and A Perez Phys. Phys. Rev. D 89 084069 (2013)

    ADS  Google Scholar 

  23. A Ghosh and A Perez Class Quantum Grav. 21 5245 (2004)

    Google Scholar 

  24. O Dreyer, A Ghosh and G Avirup Phys. Rev. D 89 024035 (2014)

    ADS  Google Scholar 

  25. B Chatterjee and A Ghosh JHEP 04 125 (2012)

    ADS  Google Scholar 

  26. A Chatterjee, B Chatterjee and A Ghosh Phys. Phys. Rev. D 87 084051 (2013)

    ADS  Google Scholar 

  27. S I Kruglov Mod. Phys. Lett. A 29 1450203 (2014)

    ADS  Google Scholar 

  28. S I Kruglov Int. J. Mod. Phys. A 29 1450118 (2014)

    ADS  Google Scholar 

  29. I Sakalli and A Ovgun J. Exp. Theor. Phys. 121 404 (2015)

    ADS  Google Scholar 

  30. C Ge-Rui, Z Shiwei and H Yong-Chang Astrophys. Space Sci. 357 51 (2015)

    ADS  Google Scholar 

  31. L Xiang-Qian and C Ge-Rui Phys. Lett. B 751 34 (2015)

    ADS  Google Scholar 

  32. I Sakalli and A Ovgun Eur. Phys. J. Plus 130 110 (2015)

    Google Scholar 

  33. H Gursel and I Sakalli Can. J. Phys. 94 147 (2016)

    ADS  Google Scholar 

  34. T Ibungochouba, I Ablu and K Yugindro Astrophys. Space Sci. 361 103 (2016)

    ADS  Google Scholar 

  35. D Y Chen, Q Q Jiang and X T Zu Phys. Lett. B 665 106 (2008)

    ADS  MathSciNet  Google Scholar 

  36. A G Riess et al Astrono. J. 116 1009 (1998)

    ADS  Google Scholar 

  37. S Perlmutter et al Astrophys. J. 517 565 (1999)

    ADS  Google Scholar 

  38. T Padmanabhan Phys. Rep.  380 235 (2003)

    ADS  MathSciNet  Google Scholar 

  39. B Carter Commun. Math. Phys. 17 233 (1970)

    ADS  Google Scholar 

  40. G W Gibbons and S W Hawking Phys. Rev. D  10 2738 (1977)

    ADS  Google Scholar 

  41. J Zhang and Z Zhao Phys. Lett. B 618 14 (2005)

    ADS  MathSciNet  Google Scholar 

  42. G Q Li Europhys. Lett. 76 203 (2006)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y. Kenedy Meitei acknowledges the CSIR for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ibungochouba Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibungochouba Singh, T., Kenedy Meitei, Y., Ablu Meitei, I. et al. Quantum radiation of Kerr black hole in de Sitter background. Indian J Phys 94, 2061–2064 (2020). https://doi.org/10.1007/s12648-019-01640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01640-2

Keywords

PACS No.

Navigation