Skip to main content
Log in

Nuclear structure of the even–even rare-earth Er–Os nuclei for N = 102

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present research, the nuclear deformation of even–even rare-earth Er–Os isotopes with N = 102 has been calculated using a new empirical equation and an interacting boson model (IBM-1). The potential energy surface, reduced transition probabilities B(E2) and energy level have been calculated for these nuclei. The properties of gamma, beta and yrast band have been also calculated and compared with the available experimental data. The results of both models have been indicated the similarity or dissimilarity with the published experimental data. We have been studied the ratio \(E_{\gamma } (I + 2) /E_{\gamma } (I)\) versus the spin (I) to determine the character of the ground-state band. From the outcome of our investigation, it is possible to conclude that the 170Er/172Yb/174Hf/176W nuclei show a rotational SU(3) character and 178Os shows X(5) character. Results of this calculation are in good agreement with the corresponding available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F Iachello and A Arima The Interacting Boson Model (Cambridge: Cambridge University Press) (1987)

    Google Scholar 

  2. F Iachello Phys. Rev. Lett.87 052502 (2001)

    ADS  Google Scholar 

  3. F Iachello Phys. Rev. Lett.85 3580 (2000)

    ADS  Google Scholar 

  4. P Cejnar, J Jolie and R F Casten Rev. Mod. Phys.82 2155 (2010)

    ADS  Google Scholar 

  5. R F Casten, E A McCutchan J. Phys. G34 R285 (2007)

    ADS  Google Scholar 

  6. E A McCutchan and N V Zamfir Phys. Rev. C71 054306 (2005)

    ADS  Google Scholar 

  7. A Dewald et al J. Phys. G Nucl. Part. Phys. 31 S1427 (2005)

    Google Scholar 

  8. Z Jin-Fu, L Li-Jun and B Hong-Bo, Chin. Phys. Soc. 16 7 (2007)

    Google Scholar 

  9. S F Shen, Y B Chen, F R Xu, S J Zheng, B Tang, and T D Wen Phys. Rev. C75 047304 (2007)

    ADS  Google Scholar 

  10. H H Khudher, A K Hasan and F I Sharrad Ukrainian J. Phys.62 152 (2017)

    Google Scholar 

  11. K Nomura, T Otsuka, N Shimizu and L Guo J. Phys. Conf. Ser. 267 012050 (2011)

    Google Scholar 

  12. H L Liu, F R Xu, P M Walker and C A Bertulani Phys. Rev. C83 067303 (2011)

    ADS  Google Scholar 

  13. X Hao et al. J. Phys. G Nucl. Part. Phys.38 025102 (2011)

    ADS  Google Scholar 

  14. A A Raduta and P Buganu J. Phys. G Nucl. Part. Phys. 40 025108 (2013)

    ADS  Google Scholar 

  15. E Williams et al EPJ Web of Conferences35 06006 (2012)

  16. A Okhunov, F I Sharrad, A A Al-Sammarea and M U Khandaker Chin. Phys. C39 084101 (2015)

    ADS  Google Scholar 

  17. F I Sharrad, I Hossain, I M Ahmed, H Y Abdullah, S T Ahmad and A S Ahmed Braz. J. Phys.45 340 (2015)

    ADS  Google Scholar 

  18. J B Gupta and S Sharma Indian J. Pure Appl. Phys. 26 601 (1988)

    Google Scholar 

  19. M A Al-Jubbori, H H Kassim, F I Sharrad and I Hossain Int. J. Modern Phys. E27 1850035 (2018)

    ADS  Google Scholar 

  20. [20] R Chudhary et al. Indian J. Phys.92 377 (2018)

    ADS  Google Scholar 

  21. A Arima and F Iachello Ann. Phys. N.Y.111 201 (1978)

    ADS  Google Scholar 

  22. K Abrahams, K Allaart and A E L Dieperink Nuclear Structure (New York and London: Plenum Press) (1981)

    Google Scholar 

  23. R F Casten and D D Warner Rev. Mod. Phys.60 389 (1988)

    ADS  Google Scholar 

  24. F Iachello Phys. Rev. Lett.44 772 (1980)

    ADS  Google Scholar 

  25. M A Al-Jubbori, H H Kassim, F I Sharrad and I Hossain Nucl. Phys. A955 101 (2016)

    ADS  Google Scholar 

  26. A Arima, F Iachello Ann. Phys.281 2 (2000)

    ADS  Google Scholar 

  27. R F Casten Rom. Rep. Phys.57 515 (2005)

    Google Scholar 

  28. E A McCutchan and R F Casten Phys. Rev. C74 057302 (2006)

    ADS  Google Scholar 

  29. A A Raduta, A C Gheorghe, P Buganu, and A Faessler, Nucl. Phys. A819 46 (2009)

    ADS  Google Scholar 

  30. A Gheorghe, A A Raduta, and A Faessler, Phys. Lett. B648 171 (2007)

    ADS  Google Scholar 

  31. A A Raduta, V Ceausescu, A Gheorghe, and R M Dreizler Nucl. Phys. A381 253 (1982)

    ADS  Google Scholar 

  32. P H Regan et al. Phys. Rev. Lett.90 152502 (2003)

    ADS  Google Scholar 

  33. G Scharff-Goldhaber and J Weneser Phys. Rev.98 212 (1955)

    ADS  Google Scholar 

  34. A Bohr and B R Mottelson Mat. Fys. Medd27 16(1953)

    Google Scholar 

  35. http://www.nndc.bnl.gov/chart/getENSDFDatasets.jsp

  36. C M Baglin Nucl. Data Sheets111 1807 (2010)

    ADS  Google Scholar 

  37. C M Baglin Nucl. Data Sheets96 611 (2002)

    ADS  Google Scholar 

  38. B Singe Nucl. Data Sheets75 199 (1995)

    ADS  Google Scholar 

  39. E Browne and H Junde Nucl. Data Sheets87 15 (1999)

    ADS  Google Scholar 

  40. M S Basunia, Nucl. Data Sheets107 791(2006)

    ADS  Google Scholar 

  41. E Achterberg, O A Capurro and G V Marti Nucl. Data Sheets110 1473 (2009)

    ADS  Google Scholar 

  42. S C Wu and H Niu Nucl. Data Sheets100 483 (2003)

    ADS  Google Scholar 

  43. D Bonatsos and L D Skouras Phys. Rev. C43 952R (1991)

    ADS  Google Scholar 

  44. A Shelley, I Hossain, Fadhil I Sharrad, Hewa Y Abdullah and M A Saeed Prob. Atom. Sci.& Tech.64 38 (2015)

    Google Scholar 

  45. F I Sharrad, H Y Abdullah, N Al-Dahan, A A Mohammed-Ali, A A Okhunov, H Abu Kassim Romanian J. Phys.57 1346 (2012)

    Google Scholar 

  46. M A Al-Jubbori Ukrain J. Phys.62 936 (2017)

    Google Scholar 

  47. O Scholten Computer code PHINT KVI: Groningen Holland (1980)

  48. D Bonatsos (1988) Phys. Lett. B200 1

    ADS  Google Scholar 

  49. D Bonatsos et al. Phys. Rev. C62 024301 (2000)

    ADS  Google Scholar 

  50. H H Kassim, A A Mohammed-Ali, F I Sharrad, I Hossain and K S Jassim Iran J. Sci. Tech. Trans. Sci. https://doi.org/10.1007/s40995-016-0104-x

    Google Scholar 

  51. H H Kassim and F I Sharrad Int. J. Modern Phys. E23 1450070 (2014)

    ADS  Google Scholar 

  52. S Raman, C W Nestor and P Tikaneny Atom. Data Nucl. Data Tables78 1 (2001)

    ADS  Google Scholar 

  53. A E L Dieperink, O Scholten, and F Iachello Phys. Rev. Lett.44 1747 (1980)

    ADS  Google Scholar 

  54. H H Kassim and F I Sharrad Nucl. Phys. A933 1 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Department of Physics, College of Science, University of Kerbala, and Department of Physics, College of Education for Pure Science, University of Mosul, for supporting this work. The authors also thank Dr. Ammar Zakar, Department of Physics, College of Education for Pure Science, University of Mosul, for proofreading the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jubbori, M.A., Kassim, H.H., Abd-Aljbar, A.A. et al. Nuclear structure of the even–even rare-earth Er–Os nuclei for N = 102. Indian J Phys 94, 379–390 (2020). https://doi.org/10.1007/s12648-019-01461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01461-3

Keywords

PACS Nos.

Navigation