Skip to main content

Advertisement

Log in

Study of the nuclear deformation of some even–even isotopes using Hartree–Fock–Bogoliubov method (effect of the collective motion)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present research, the nuclear deformation of the Ne, Mg, Si, S, Ar, and Kr even–even isotopes has been investigated within the framework of Hartree–Fock–Bogoliubov method and SLy4 Skyrme parameterization. In particular, the deform shapes of the effect of nucleons collective motion by coupling between the single-particle motion and the potential surface have been studied. Furthermore, binding energy, the single-particle nuclear density distributions, the corresponding nuclear radii, and quadrupole deformation parameter have been also calculated and compared with the available experimental data. From the outcome of our investigation, it is possible to conclude that the deforming effects cannot be neglected in a characterization of the structure of the neutron-rich nuclei. The relation between the single-particle motion and the potential surface leads to note that the change in the interactions between the nucleons causes the evolution of nuclear surface and leads to variation in the potential shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A Bohr and B R Mottelson Nuclear Structure, Volume 1: Single-Particle Motion (Singapore: World Scientific) (1969)

    Google Scholar 

  2. P Ring and P Schuck The Nuclear Many Body Problem (Berlin: Springer) (1980)

    Book  Google Scholar 

  3. Y Alhassid, S Levit and J Zingman Phys. Rev. Lett. 57 5639 (1986)

    Google Scholar 

  4. F Iachello, N V Zamfir and R F Casten Phys. Rev. Lett. 81 1191 (1998)

    Article  ADS  Google Scholar 

  5. N Shimizu, T Otsuka, T Mizusaki and M Honma Phys. Rev. C 70 054313 (2004)

    Article  ADS  Google Scholar 

  6. J Escher, C Bahri, D Troltenier and J P Draayer Nucl. Phys. A 633 662 (1998)

    Article  ADS  Google Scholar 

  7. B D Day Rev. Mod. Phys. 39 719 (1967)

    Article  ADS  Google Scholar 

  8. P Ring Prog. Part. Nucl. Phys. 37 193 (1996)

    Article  ADS  Google Scholar 

  9. M Bender, P-H Heenen and P-G Reinhard Rev. Mod. Phys. 75 121 (2003)

    Article  ADS  Google Scholar 

  10. P G Reinhard and E W Otten Nucl. Phys. A 420 173 (1984)

    Article  ADS  Google Scholar 

  11. T Inakura, M Yamagami and K Matsuyanagi Int. J. Mod. Phys. E 13 157 (2004)

    Article  ADS  Google Scholar 

  12. C J Gen, C X Zhou, W T Tai and M Y Gang Chin. Phys. Soc. 14 1009 (2005)

    Google Scholar 

  13. R Guzman and P Sarriguren Phys. Rev. C 76 064303 (2007)

    Article  ADS  Google Scholar 

  14. A Li, X R Zhou and H Sagawa Theor. Exp. Phys. 063D03 9 (2013)

    Google Scholar 

  15. A A Alzubadi and A A Abdulhasan Karbala Int. J. Mod. Sci. 1 110 (2015)

    Article  Google Scholar 

  16. M V Stoistsov, J Dobaczewski, W Nazarewicz and P Ring Comput. Phys. Commun. 167 43 (2005)

    Article  ADS  Google Scholar 

  17. T H R Skyrme Nucl. Phys. 9 615 (1959)

    Article  Google Scholar 

  18. J Kvasil Nuclear Structure and Nuclear Processes (Prague: Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University) (2013)

    Google Scholar 

  19. A I Goodman Adv. Nucl. Phys. 11 263 (1975)

    Google Scholar 

  20. F Tondeur Nucl. Phys. A 315 353 (1979)

    Article  ADS  Google Scholar 

  21. W Greiner and J A Maruhn Nuclear Models (Berlin: Springer) (1996)

    Book  MATH  Google Scholar 

  22. D J Rowe Nuclear Collective Motion Models and Theory (Singapore: World Scientific Publishing Co. Pte. Ltd) (2010)

    Book  MATH  Google Scholar 

  23. B Mottelson Rev. Mod. Phys. 48 375 (1976)

    Article  ADS  Google Scholar 

  24. W Nazarewicz Nucl. Phys. A 557 489 (1993)

    Article  ADS  Google Scholar 

  25. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A 635 231 (1998)

    Article  ADS  Google Scholar 

  26. I Angeli and K P Marinova At. Data Nucl. Data Tables 99 69 (2013)

    Article  ADS  Google Scholar 

  27. National Nuclear Data Center Brookhaven National Laboratory, www.nndc.bnl.gov

  28. D L Hill and J A Wheeler Phys. Rev. 89 1102 (1953)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Alzubadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzubadi, A.A., Obaid, R.S. Study of the nuclear deformation of some even–even isotopes using Hartree–Fock–Bogoliubov method (effect of the collective motion). Indian J Phys 93, 75–92 (2019). https://doi.org/10.1007/s12648-018-1269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1269-2

Keywords

PACS Nos.

Navigation