Skip to main content
Log in

Thermodynamic approach of AlGaN MOVPE growth at atmospheric pressure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

AlxGa1-xN epilayers were grown on GaN/sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE) at atmospheric pressure. Different trimethylaluminum (TMA) flow rates were used in order to vary the solid aluminum (Al) molar fraction. In situ laser reflectometry shows that the higher the TMA flow, the lower the growth rate. The Al molar fraction was determined by high-resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. In order to explain the evolution of the growth rate and Al fraction, we have developed a complete thermodynamic model in which all possible parasitic reactions between TMA and ammonia (NH3) have been considered. The experimental results are explained by adding a correction factor γ in the definition of the theoretical Al molar fraction. This factor is related to parasitic reactions. Two principal adducts AlCH3.NH and (AlCH3.NH)3 were predicted to form in a temperature range from 300 to 1000 K with a maximum equilibrium partial pressure at 600 K for AlCH3.NH species. These adducts undergo a thermal decomposition and disappear for temperatures above 700 K and 1000 K for (AlCH3.NH)3 and AlCH3.NH, respectively. We conclude that the parasitic reactions would be avoided or minimized if TMA and NH3 are mixed in a reactor region where the temperature is above 1000 K. Thus, the growth rate and Al incorporation would be better controlled in a MOVPE reactor designed such a way that the mixing of TMA and NH3 flows takes place at the latest, in the hottest region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R M Farell, E C Young, F Wu, S P DenBaars and J S Speck Semicond. Sci. Technol. 27 024001 (2012)

    Article  ADS  Google Scholar 

  2. P Vennéguès Semicond. Sci. Technol. 27 024004 (2012)

  3. H K Chauveau, P De Mierry, J-M Chauveau and J-Y Duboz J. Cryst. Growth 316 30 (2011)

    Article  ADS  Google Scholar 

  4. H Sun et al. Appl. Phys. Lett. 85 531 (2004)

    Article  ADS  Google Scholar 

  5. Y Jung et al. J. Appl. Phys. 42 2349 (2003)

    Article  Google Scholar 

  6. T Someya and Y Arakawa Appl. Phys. Lett. 73 3653 (1998)

    Article  ADS  Google Scholar 

  7. C Y Fang, C F Lin, E Y Chang and M S Feng Appl. Phys. Lett. 80 4558 (2002)

    Article  ADS  Google Scholar 

  8. D C Lu and S Duan J. Cryst. Growth 208 73 (2000)

    Article  ADS  Google Scholar 

  9. A Koukitu, Y Kumagai and H Seki J. Cryst. Growth 221 743 (2000)

    Article  ADS  Google Scholar 

  10. Y A Xi et al. Appl. Phys. Lett. 90 51104 (2007)

    Article  Google Scholar 

  11. A Rice et al. J. Cryst. Growth 312 1321 (2010)

    Article  ADS  Google Scholar 

  12. D W Song, H J Kim, Y S Jeon and E Yoon J. Cryst. Growth 298 367 (2007)

    Article  ADS  Google Scholar 

  13. A Belousov, J Karpinski and B Batlogg J. Cryst. Growth 312 2579 (2010)

    Article  ADS  Google Scholar 

  14. D Endres and S Mazumder J. Cryst. Growth 335 42 (2011)

    Article  ADS  Google Scholar 

  15. J R Creighton, G T Wang, W G Breiland and M E Coltrin J. Cryst. Growth 261 204 (2004)

    Article  ADS  Google Scholar 

  16. K Matsumoto and A Tachibana J. Cryst. Growth 272 360 (2004)

    Article  ADS  Google Scholar 

  17. K Hiramatsu et al. J. Cryst. Growth 221 316 (2000)

    Article  ADS  Google Scholar 

  18. I Halidou et al. Mater. Sci. Eng. B 110 251 (2004)

    Article  Google Scholar 

  19. Z Benzarti et al. Phys. Stat. Sol a 201 502 (2004)

    Article  ADS  Google Scholar 

  20. I. Halidou et al. Appl. Surf. Science 280 660 (2013).

    Article  ADS  Google Scholar 

  21. I. Halidou et al. Opt. Mater. 35 988 (2013)

    Article  ADS  Google Scholar 

  22. A Touré et al. Phys. Stat. Sol a 209 977 (2012)

    Article  ADS  Google Scholar 

  23. D G Zhao et al. Appl. Surf. Sci 253 2452 (2006)

    Article  ADS  Google Scholar 

  24. G S Huang, H H Yao, T C Lu, H C Kuo and S C Wang J. Appl. Phys 99 104901 (2006)

    Article  ADS  Google Scholar 

  25. S C Choi et al. J. Appl. Phys 87 172 (2000)

    Article  ADS  Google Scholar 

  26. AV Kondratyev et al. J. Cryst. Growth 272 420 (2004)

    Article  ADS  Google Scholar 

  27. D G Zhao et al. J. Cryst. Growth 289 72 (2006)

    Article  ADS  Google Scholar 

  28. A V Lobanova et al. J. Cryst. Growth 287 601 (2006)

    Article  ADS  Google Scholar 

  29. T G Mihopoulos, V Gupta and K. F Jensen J. Cryst. Growth 195 733 (1998)

    Article  ADS  Google Scholar 

  30. B Cheynet, J D Dubois and A Rivet Thermodata/INPG/CNRS (Saint Martin d’Hères Cedex) (1998)

  31. A Rebey, L Beji, B El Jani and P Gibart J. Cryst. Growth 191 734 (1998)

    Article  ADS  Google Scholar 

  32. A Bchetnia, A Rebey, T Boufaden and B El Jani J. Cryst. Growth 207 15 (1999)

    Article  ADS  Google Scholar 

  33. A Rebey, T Boufaden and B El Jani J. Cryst. Growth 203 12 (1999)

    Article  ADS  Google Scholar 

  34. I Halidou, Z Benzarti, T Boufaden and B El Jani Superlat. Microstruct 40 496 (2006)

    Article  ADS  Google Scholar 

  35. A Toure, I Halidou, Z Benzarti and T Boufaden Microelectron. J. 40 363 (2009)

    Article  Google Scholar 

  36. J R Creighton and G T Wang J. Phys. Chem. A 109 10554 (2005)

    Article  Google Scholar 

  37. JANAF Thermochemical Tables, 2nd edn. NSRDS-NBS 37 (Washington DC: National Bureau of Standards US) (1971)

  38. I N Przhevalskii, S Y Karpov and Y N Makarov MRS Internet J. Nitride Semicond. Res 3 30 (1998)

    Article  Google Scholar 

  39. C. Touzia, F. Omnès, B. El Jani and P. Gibart J. Cryst. Growth 279 31 (2005)

    Article  ADS  Google Scholar 

  40. N Kato et al. J. Cryst. Growth 298 215 (2007)

    Article  ADS  Google Scholar 

  41. D B Li et al. J. Cryst. Growth 298 372 (2007)

    Article  ADS  Google Scholar 

  42. N Fujimoto et al. Phys. Stat. Sol c 3 1617 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pr T. Boufaden for helpful discussions. This work is supported by DGRST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Halidou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halidou, I., Touré, A. & El Jani, B. Thermodynamic approach of AlGaN MOVPE growth at atmospheric pressure. Indian J Phys 93, 1137–1145 (2019). https://doi.org/10.1007/s12648-019-01385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01385-y

Keywords

PACS Nos

Navigation