Skip to main content
Log in

Numerical study for Bödewadt flow of water based nanofluid over a deformable disk: Buongiorno model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Here the well-known Bödewadt flow problem is extended to the case where nanofluid occupies the space above a stretchable disk. Both Brownian motion and thermophoresis effects are incorporated into the transport equations. Physically realistic condition accounting for zero normal flux of nanoparticles is invoked. Similar form of governing differential system is attained through conventional Von Kármán relations. An efficient Keller-box method with high accuracy is used to report numerical solutions of the problem. Our results show that hydrodynamic boundary layer becomes thinner when larger stretching rate is imposed. Negative value of axial velocity reveals downward flow which is the consequence of radial stretching. Velocity components have oscillatory decaying profiles when the radial stretching effect is absent. Larger thermophoretic force leads to thicker temperature and nanoparticle concentration profiles. Both two-and three-dimensional streamlines are plotted for a specified ratio of rotation to the stretching rate. Comparative study of present results with those of previous published results is also discussed in a special situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T Von Kármán Z. Angew. Math. Mech. 12 33 (1921)

    Google Scholar 

  2. C Y Wang Z. Angew. Math. Phys. 39 177 (1988)

    Article  Google Scholar 

  3. V Rajeswari and G Nath Int. J. Eng. Sci. 30 747 (1992)

    Article  Google Scholar 

  4. H S Takhar and G Nath Z. Angew. Math. Phys. 49 989 (1998)

    Article  MathSciNet  Google Scholar 

  5. H S Takhar, A J Chamkha and G Nath Int. J. Therm. Sci. 42 23 (2003)

    Article  Google Scholar 

  6. R Nazar, N Amin and I Pop Mech. Res. Commun. 31 121 (2004)

    Google Scholar 

  7. Y Tan and S J Liao J. Appl. Mech. 74 1011 (2007)

    Article  ADS  Google Scholar 

  8. M Sajid, T Javed and T Hayat Nonlinear Dyn. 51 259 (2008)

    Article  Google Scholar 

  9. M Mustafa AIP Adv. (2015). doi:10.1063/1.4917306.

    Google Scholar 

  10. M Turkyilmazoglu Int. J. Mech. Sci. 90 246 (2015)

    Article  Google Scholar 

  11. K V Wong and O D Leon Adv. Mech. Eng. 10 1–11 (2010). doi:10.1155/2010/519659

    Google Scholar 

  12. J Buongiorno and L Hu Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference MNHMT2009-18062 (2009)

  13. R K Tiwari and M K Das Int. J. Heat Mass Transf. 50 2002 (2007)

    Article  Google Scholar 

  14. J Buongiorno ASME J Heat Transf. 128 240 (2006)

  15. M Sheikholeslami, F B Sheykholeslami, S Khoshhal, H Mole-Abasia, D D Ganji and H B Rokni Neural Comput. Appl. 25 171 (2014)

    Article  Google Scholar 

  16. D Pal and G Mandal Phys. Scrip. (2014). doi:10.1088/0031-8949/89/12/125202

    Google Scholar 

  17. M Turkyilmazoglu Comp. Fluids 94 139 (2014)

  18. A Malvandi and D D Ganji J. Magnet. Magn. Mater. 362 172 (2014)

  19. M Sheikholeslami, H Hatami and D D Ganji J. Molec. Liq. 190 112 (2014)

    Article  Google Scholar 

  20. M Mustafa, J A Khan, T Hayat and A Alsaedi J. Molec. Liq. 211 119 (2015)

    Article  Google Scholar 

  21. D A Nield and A V Kuznetsov Int. J. Heat Mass Transf. 52 5792 (2009)

    Article  Google Scholar 

  22. W A Khan and I Pop Int. J. Heat Mass Transf. 53 2477 (2010)

    Article  Google Scholar 

  23. O Makinde and A Aziz Int. J. Therm. Sci. 50 1326 (2011)

    Article  Google Scholar 

  24. M Mustafa, M A Farooq, T Hayat and A Alsaedi PLoS ONE 8 (2013). doi:10.1371/journal.pone.0061859.

  25. M M Rashidi, S Abelman and N F Mehr Int. J. Heat Mass Transf. 62 515 (2013)

    Article  Google Scholar 

  26. D A Nield and A V Kuznetsov Int. J. Heat Mass Transf. 68 211 (2014)

    Article  Google Scholar 

  27. A V Kuznetsov and D A Nield Int. J. Therm. Sci. 77 126 (2014)

    Article  Google Scholar 

  28. A Mushtaq, M Mustafa, T Hayat and A Alsaedi J. Taiwan Inst. Chem. Eng. 45 1176 (2014)

    Article  Google Scholar 

  29. M M Rashidi, N Freidoonimehr, A Hosseini, O A Bég and T K Hung Meccan. 49 469 (2014)

    Google Scholar 

  30. D A Nield and A V Kuznetsov Int. J. Heat Mass Transf. 70 430 (2014)

    Article  Google Scholar 

  31. M Turkyilmazoglu and I Pop Int. J. Heat Mass Transf. 59 167 (2013)

    Article  Google Scholar 

  32. M Mustafa, A Mushtaq, T Hayat and B Ahmad PLoS ONE 9 (2014). doi:10.1371/journal.pone.0103946

  33. M Mustafa and A Mushtaq The Eur. Phys. J. Plus 130 (2015). doi: 10.1140/epjp/i2015-15178-1

  34. J A Khan, M Mustafa, T Hayat and A Alsaedi Int. J. Heat Mass Transf. 86 158 (2015)

    Article  Google Scholar 

  35. R Dhanai, P Rana and L Kumar Pow. Tech. 288 140 (2016)

    Google Scholar 

  36. T Cebeci and P Bradshaw Physical and Computational Aspects of Convective Heat Transfer (Springer-Verlag, New York) Chapter 13 (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mustafa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J.A., Mustafa, M., Hayat, T. et al. Numerical study for Bödewadt flow of water based nanofluid over a deformable disk: Buongiorno model. Indian J Phys 91, 527–533 (2017). https://doi.org/10.1007/s12648-017-0959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-0959-5

Keywords

PACS Nos.

Navigation